A large deviation result for the subcritical Bernoulli percolation

Olivier Couronné

Annales de la Faculté des sciences de Toulouse : Mathématiques (2005)

  • Volume: 14, Issue: 2, page 201-214
  • ISSN: 0240-2963

How to cite

top

Couronné, Olivier. "A large deviation result for the subcritical Bernoulli percolation." Annales de la Faculté des sciences de Toulouse : Mathématiques 14.2 (2005): 201-214. <http://eudml.org/doc/73648>.

@article{Couronné2005,
author = {Couronné, Olivier},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
language = {eng},
number = {2},
pages = {201-214},
publisher = {Université Paul Sabatier, Institut de Mathématiques},
title = {A large deviation result for the subcritical Bernoulli percolation},
url = {http://eudml.org/doc/73648},
volume = {14},
year = {2005},
}

TY - JOUR
AU - Couronné, Olivier
TI - A large deviation result for the subcritical Bernoulli percolation
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 2005
PB - Université Paul Sabatier, Institut de Mathématiques
VL - 14
IS - 2
SP - 201
EP - 214
LA - eng
UR - http://eudml.org/doc/73648
ER -

References

top
  1. [1] Van Den Berg ( J.), Kesten ( H.) . - Inequalities with applications to percolation and reliability theory, J. Appl. Prob.22, p. 556-569 (1985). Zbl0571.60019MR799280
  2. [2] Castaing ( C. ) , Valadier ( M.). — Convex analysis and measurable multifunctions , Lectures Notes in Math580, Springer (1977). Zbl0346.46038MR467310
  3. [3] Cerf ( R.) . - Large Deviations of the Finite Cluster Shape for Two-Dimensional Percolation in the Hausdorff and L1 Metric, J. Theor. Prob.13 (2000). Zbl0974.60089MR1777542
  4. [4] Cerf ( R.) . - Large deviation for three-dimensional supercritical percolation, Astérisque267 (2000). Zbl0962.60002MR1774341
  5. [5] Dembo ( A.) , Zeitouni ( O.). - Large deviations techniques and applications , 2nd edition, Springer, New York (1998). Zbl0896.60013MR1619036
  6. [6] Falconer ( K.J. ). — The Geometry of Fractals Sets , Cambridge (1986). Zbl0587.28004MR867284
  7. [7] Fortuin ( C. ), Kasteleyn ( P.), Ginibre ( J.). - Correlation inequalities on some partially ordered sets, Commun. Math. Phys.22, 89-103 (1971). Zbl0346.06011MR309498
  8. [8] Freidlin ( M.I. ), Wentzell ( A.D.). - Random perturbations of dynamical systems, Springer-Verlag, New York (1984). Zbl0522.60055MR722136
  9. [9] Grimmett ( G. ). — Percolation, Second Edition, Springer321 (1999). Zbl0926.60004MR1707339
  10. [10] Harris ( T.E. ) . - A lower bound for the critical probability in a certain percolation process, Proc. Camb. Phil. Soc.56, 13-20 (1960). Zbl0122.36403MR115221
  11. [11] Kovchegov ( Y. ), Sheffield ( S.). — Linear speed large deviations for percolation clusters, Preprint (2003). Zbl1060.60097MR2042757

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.