Flats in 3-manifolds
Annales de la Faculté des sciences de Toulouse : Mathématiques (2005)
- Volume: 14, Issue: 3, page 459-499
- ISSN: 0240-2963
Access Full Article
topHow to cite
topKapovich, Michael. "Flats in 3-manifolds." Annales de la Faculté des sciences de Toulouse : Mathématiques 14.3 (2005): 459-499. <http://eudml.org/doc/73654>.
@article{Kapovich2005,
author = {Kapovich, Michael},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {flats; hyperbolization conjecture; non-positive curvature},
language = {eng},
number = {3},
pages = {459-499},
publisher = {Université Paul Sabatier, Institut de Mathématiques},
title = {Flats in 3-manifolds},
url = {http://eudml.org/doc/73654},
volume = {14},
year = {2005},
}
TY - JOUR
AU - Kapovich, Michael
TI - Flats in 3-manifolds
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 2005
PB - Université Paul Sabatier, Institut de Mathématiques
VL - 14
IS - 3
SP - 459
EP - 499
LA - eng
KW - flats; hyperbolization conjecture; non-positive curvature
UR - http://eudml.org/doc/73654
ER -
References
top- [Ba] Bass ( H.). - Finitely generated subgroups of GL2 , In: "Smith Conjecture" , Acad. Press, p. 127-136 (1984). Zbl0599.57003MR758465
- [BF] Bestvina ( M.), Feighn ( M.). — Stable actions of groups on real trees, Inv. Math., 121, F. 2, p. 287-322 (1995). Zbl0837.20047MR1346208
- [BM] Bestvina ( M.), Mess ( G.). — The boundary of negatively curved groups, Journal of AMS, 4, N 3, p. 469-481 (1991). Zbl0767.20014MR1096169
- [BK1] Bonk ( M. ), Kleiner ( B.). — Rigidity for quasi-Möbius group actions, J. Differential Geom. vol. 61, no. 1, p. 81-106 (2002). Zbl1044.37015
- [BK2] Bonk ( M. ), Kleiner ( B.). - Quasisymmetric parametrizations of two-dimensional metric spheres, Invent. Math.150, no. 1, p. 127-183 (2002). Zbl1037.53023MR1930885
- [BH] Bridson ( M.), Haefliger ( A.). — "Metric spaces of non-positive curvature", Grundlehren der Mathematischen Wissenschaften , Vol. 319, Springer-Verlag (1999). Zbl0988.53001MR1744486
- [B] Buyalo ( S. ). - Euclidean planes in 3-dimensional manifolds of nonpositive curvature, Mat. Zametki, 43, p. 103-114 (1988). Zbl0644.53035MR932905
- [CJ] Casson ( A. ), Jungreis ( D.). - Convergence groups and Seifert fibered 3-manifolds, Inventiones Math., 118, F. 3, p. 441-456 (1994). Zbl0840.57005MR1296353
- [Ca] Cannon ( J. ). — The combinatorial Riemann mapping theorem, Acta Mathematica, 173, p. 155-234 (1994). Zbl0832.30012MR1301392
- [CS] Cannon ( J. ), Swensen ( E.). - Recognizing constant curvature discrete groups in dimension 3, Trans. Amer. Math. Soc., 350, p. 809-849 (1998). Zbl0910.20024MR1458317
- [E] Eberlein ( P.). - Geodesic flow on certain manifolds without conjugate points, Transaction of AMS, 167, p. 151-170 (1972). Zbl0209.53304MR295387
- [Ga1] Gabai ( D. ). — Convergence groups are Fuchsian groups , Annals of Mathematics, 136, p. 447-510 (1992). Zbl0785.57004MR1189862
- [Ga2] Gabai ( D.). — Quasi-minimal semi-Euclidean laminations in 3-manifolds , In: "Surveys in differential geometry" , Vol. III (Cambridge, MA, 1996), Int. Press, Boston, MA , p. 195-242 (1988). Zbl0964.57015MR1677889
- [Ga3] Gabai ( D.). — A geometric and topological rigidity of hyperbolic 3-manifolds, Journ. of AMS, 10, p 37-74 (1997). Zbl0870.57014MR1354958
- [Gh] Ghys ( E.) , De La Harpe ( P.). — Infinite groups as geometric objects (after Gromov), In: "Ergodic Theory, Dynamics and Hyperbolic Groups", Oxford Sci. Publ., p. 299-314 (1991). Zbl0764.57003MR1130180
- [Gri] Grigorchuk ( R.). - Growth degrees of p-groups and torsion-free groups, Math. USSR, Sb., 54, p. 185-205 (1985). Zbl0583.20024
- [Gro1] Gromov ( M.). - Groups of polynomial growth and expanding maps, Publ. of IHES, 53, p. 53-73 (1981). Zbl0474.20018MR623534
- [Gro2] Gromov ( M.). - Hyperbolic groups, In: "Essays in Group Theory", Publications of MSRI, Vol. 8, p. 75-264 (1987). Zbl0634.20015MR919829
- [Gro3] Gromov ( M.). - Asymptotic invariants of infinite groups, in "Geometric Group Theory", Vol. 2; London Math. Society Lecture Notes, 182, Cambridge Univ. Press (1993). Zbl0841.20039MR1253544
- [He1] Hempel ( J.). — "3-manifolds", Annals of Math. Studies, Vol. 86, Princeton Univ. Press, (1976). Zbl0345.57001MR415619
- [He2] Hempel ( J.). — Residual finiteness for 3-manifolds . In: Annals of Math. Studies, Vol. 111, Princeton Univ. Press, p. 373-396 (1987). Zbl0772.57002MR895623
- [I] Imanishi ( H.). - On the theorem of Denjoy-Sacksteder for codimension one foliations without holonomy, J. Math. Kyoto Univ., 14, p. 607-634 (1974). Zbl0296.57006MR368028
- [K] Kapovich ( M. ). — "Hyperbolic Manifolds and Discrete Groups", Birkhäuser (2001). Zbl0958.57001MR1792613
- [KK1] Kapovich ( M. ) , Kleiner ( B.). — Geometry of quasi-planes , Preprint (2004).
- [KK2] Kapovich ( M. ) , Kleiner ( B.). - Weak hyperbolization conjecture for 3-dimensional CAT(0) groups, Preprint (2004).
- [KL] Kapovich ( M.), Leeb ( B.), Quasi-isometries preserve the geometric decomposition of Haken manifolds, Inventiones Math , vol. 128, p. 393-416 (1997). Zbl0866.20033MR1440310
- [KI] Kleiner ( B. ). — Private communication.
- [L] Long ( D.). — Immersions and embeddings of totally geodesic surfaces , Bull. London Math. Soc., 19, p. 481-484 (1987). Zbl0596.57011MR898729
- [Mc] Mcmullen ( C.). - Iterations on Teichmüller space, Inventiones Math., 99, N 2, p. 425-454 (1989). Zbl0695.57012
- [M1] Mess ( G.). — The Seifert conjecture and groups which are coarse quasi- isometric to planes, Preprint (1990).
- [M2] Mess ( G.). — Private communication.
- [Mor] Morgan ( J.). - On Thurston's Uniformization Theorem for Three-Dimensional Manifolds, In: "Smith Conjecture", Acad. Press, p. 37-136 (1984). Zbl0599.57002MR758464
- [MS1] Morgan ( J.), Shalen ( P.). — Degenerations of hyperbolic structures, III: Actions of 3-manifold groups on trees and Thurston's compactness theorem, Ann. of Math., 127, p. 457-519 (1988). Zbl0661.57004MR942518
- [MS2] Morgan ( J.), Shalen ( P.). - Free actions of surface groups on R-trees, Topology, vol. 30, no. 2, p. 143-154 (1991). Zbl0726.57001MR1098910
- [MO] Mosher ( L. ), Oertel ( U.). - Spaces which are not negatively curved, Communications in Geometric Analysis, Communications in Analysis and Geometry, vol. 6, p. 67-140 (1998). Zbl0915.53020MR1619839
- [O] Otal ( J.-P. ). - Le théorème d'hyperbolisation pour les varietes fibrees de dimension trois, Astérisque, vol. 235 (1996). Zbl0855.57003
- [P1] Plante ( J. ). - Foliations with measure preserving holonomy , Annals of Math., 102 N 2, p. 327-361 (1975). Zbl0314.57018MR391125
- [P2] Plante ( J.) , Solvable groups acting on the real line, Transactions of AMS, 278, N 1 (1983). Zbl0569.57012MR697084
- [R] Rips ( E.). — Group actions on R-trees, in preparation.
- [Sc] Schroeder ( V. ). - Codimension one tori in manifolds of nonpositive curvature, Geom. Dedicata, 33, p. 251-265 (1990). Zbl0698.53026MR1050413
- [Sch] Schwartz ( R.). — The quasi-isometry classification of hyperbolic lattices, Math. Publ. of IHES, Vol. 82, p. 133-168 (1995). Zbl0852.22010MR1383215
- [Sco] Scott ( P. ). - A new proof of the annulus and torus theorems , Amer. Journal of Math., 102, p. 241-277 (1980). Zbl0439.57004MR564473
- [T] Thurston ( W.). — Hyperbolic structures on 3-manifolds, I, Annals of Math., 124, p. 203-246 (1986). Zbl0668.57015MR855294
- [Tu] Tukia ( P. ). — Homeomorphic conjugates of fuchsian groups, J. Reine Angew. Math.391, p. 1-54 (1988). Zbl0644.30027MR961162
- [VW] Van Den Dries ( L.), Wilkie ( A.J.). - On Gromov's theorem concerning groups of polynomial growth and elementary logic, Journ. of Algebra, Vol. 89, p. 349-374 (1984). Zbl0552.20017MR751150
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.