The quasi-isometry classification of rank one lattices

Richard Evan Schwartz

Publications Mathématiques de l'IHÉS (1995)

  • Volume: 82, page 133-168
  • ISSN: 0073-8301

How to cite

top

Schwartz, Richard Evan. "The quasi-isometry classification of rank one lattices." Publications Mathématiques de l'IHÉS 82 (1995): 133-168. <http://eudml.org/doc/104107>.

@article{Schwartz1995,
author = {Schwartz, Richard Evan},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {commensurable lattices; rank one semisimple Lie groups; symmetric spaces; rank one lattices; rank one Lie group; hyperbolic planes; nonuniform lattices; quasi-isometry},
language = {eng},
pages = {133-168},
publisher = {Institut des Hautes Études Scientifiques},
title = {The quasi-isometry classification of rank one lattices},
url = {http://eudml.org/doc/104107},
volume = {82},
year = {1995},
}

TY - JOUR
AU - Schwartz, Richard Evan
TI - The quasi-isometry classification of rank one lattices
JO - Publications Mathématiques de l'IHÉS
PY - 1995
PB - Institut des Hautes Études Scientifiques
VL - 82
SP - 133
EP - 168
LA - eng
KW - commensurable lattices; rank one semisimple Lie groups; symmetric spaces; rank one lattices; rank one Lie group; hyperbolic planes; nonuniform lattices; quasi-isometry
UR - http://eudml.org/doc/104107
ER -

References

top
  1. [C] K. CORLETTE, Hausdorff Dimension of Limits Sets I, Invent. Math., 102 (1990), 521-541. Zbl0744.53030MR91k:58067
  2. [E1] D. B. A. Epstein et al., Word Processing in Groups, Jones and Bartlett, 1992. Zbl0764.20017MR93i:20036
  3. [E2] D. B. A. Epstein, Analytical and Geometric Aspects of Hyperbolic Space, LMS Lecture Notes, series 111, Cambridge University Press, 1984. Zbl0601.00008MR88c:57003
  4. [Go] W. GOLDMAN, Complex Hyperbolic Space, notes available from the author. 
  5. [Gr1] M. GROMOV, Asymptotic Invariants of Infinite Groups, LMS Lecture Notes Series, 1994. 
  6. [Gr2] M. GROMOV, Carnot-Caratheodory Spaces Seen from Within, IHES, preprint, 1994. Zbl0864.53025
  7. [KR] A. KORANYI and H. M. REIMANN, Foundations for the Theory of Quasi-Conformal Mappings of the Heisenberg Group, Preprint, 1991. Zbl0876.30019
  8. [M1] G. D. MOSTOW, Strong Rigidity of Locally Symmetric Spaces, Annals of Math. Studies, No. 78, Princeton University Press, 1973. Zbl0265.53039MR52 #5874
  9. [M2] G. D. MOSTOW, Quasiconformal Mappings in n-Space and the Rigidity of Hyperbolic Space Forms, Publ. Math. IHES, 34 (1968), 53-104. Zbl0189.09402MR38 #4679
  10. [P] P. PANSU, Métriques de Carnot-Caratheodory et Quasi-Isométries des Espaces Symétriques de Rang Un., Annals of Math., 129 (1989), 1-60. Zbl0678.53042MR90e:53058
  11. [T] W. THURSTON, The Geometry and Topology of Three-Manifolds, Princeton University Lecture Notes, 1978. 
  12. [Z] R. ZIMMER, Ergodic Theory and Semi-Simple Lie Groups, Birkhauser, Boston, 1984. Zbl0571.58015MR86j:22014

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.