Higher order Poincaré-Pontryagin functions and iterated path integrals
Annales de la Faculté des sciences de Toulouse : Mathématiques (2005)
- Volume: 14, Issue: 4, page 663-682
- ISSN: 0240-2963
Access Full Article
topHow to cite
topGavrilov, Lubomir. "Higher order Poincaré-Pontryagin functions and iterated path integrals." Annales de la Faculté des sciences de Toulouse : Mathématiques 14.4 (2005): 663-682. <http://eudml.org/doc/73662>.
@article{Gavrilov2005,
author = {Gavrilov, Lubomir},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {limit cycles; displacement map; polynomial foliation; period annulus; iterated path integrals; Gelfand-Leray form; monodromy representation; monodromy group},
language = {eng},
number = {4},
pages = {663-682},
publisher = {Université Paul Sabatier, Institut de Mathématiques},
title = {Higher order Poincaré-Pontryagin functions and iterated path integrals},
url = {http://eudml.org/doc/73662},
volume = {14},
year = {2005},
}
TY - JOUR
AU - Gavrilov, Lubomir
TI - Higher order Poincaré-Pontryagin functions and iterated path integrals
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 2005
PB - Université Paul Sabatier, Institut de Mathématiques
VL - 14
IS - 4
SP - 663
EP - 682
LA - eng
KW - limit cycles; displacement map; polynomial foliation; period annulus; iterated path integrals; Gelfand-Leray form; monodromy representation; monodromy group
UR - http://eudml.org/doc/73662
ER -
References
top- [1] Arnold ( V.I. ). — Geometrical methods in the theory of ordinary differential equations, Grundlehr. Math. Wiss. , vol. 250, Springer-Verlag , New York (1988). Zbl0648.34002MR947141
- [2] Arnold ( V.I. ), Gusein-Zade ( S.M.), Varchenko ( A.N.). — Singularities of Differentiable Maps, vols. 1 and 2, Monographs in mathematics , Birkhäuser, Boston, 1985 and 1988.
- [3] Briskin ( M. ) , Yomdin ( Y.). - Tangential Hilbert problem for Abel equation , preprint, 2003.
- [4] Brudnyi ( A. ). — On the center problem for ordinary differential equation, arXiv:math 0301339 (2003).
- [5] Chen ( K.-T. ).— Algebras of iterated path integrals and fundamental groups, Trans. AMS156, p. 359-379 (1971). Zbl0217.47705MR275312
- [6] Chen ( K.-T. ). — Iterated Path Integrals, Bull. AMS83 (1977) 831-879. Zbl0389.58001MR454968
- [7] Françoise ( J.-P.). — Successive derivatives of a first return map, application to the study of quadratic vector fields, Ergod. Theory and Dyn. Syst.16, p. 87-96 (1996). Zbl0852.34008MR1375128
- [8] Françoise ( J.-P. ). — Local bifurcations of limit cycles, Abel equations and Liénard systems, in Normal Forms, Bifurcations and Finitness Problems in Differential Equations, NATO Science Series II, vol. 137, 2004.
- [9] Fulton ( W.). — Algebraic Topology, Springer , New York, 1995. Zbl0852.55001MR1343250
- [10] Gavrilov ( L.). - Petrov modules and zeros of Abelian integrals , Bull. Sci. Math.122, no. 8, p. 571-584 (1998). Zbl0964.32022MR1668534
- [11] Gavrilov ( L. ) , Iliev ( I.D.). — The displacement map associated to polynomial unfoldings of planar vector fields, arXiv:math.DS/0305301 (2003).
- [12] Hain ( R.). — The geometry of the mixed Hodge structure on the fundamental group, Proc. of Simposia in Pure Math., 46, p. 247-282 (1987). Zbl0654.14006MR927984
- [13] Hain ( R.). - Iterated integrals and algebraic cycles: examples and prospects. Contemporary trends in algebraic geometry and algebraic topology (Tianjin, 2000), p. 55-118, Nankai Tracts Math., 5, World Sci. Publishing, River Edge, NJ, 2002. Zbl1065.14012MR1945356
- [14] Hall ( M.). — The Theory of Groups, AMS Chelsea Publishing, 1976. Zbl0354.20001MR414669
- [15] Hilbert ( D. ). — Mathematische probleme, Gesammelte Abhandlungen III, Springer-Verlag, Berlin, p. 403-479 (1935).
- [16] Ilyashenko ( Y.S.). — Selected topics in differential equations with real and complex time, in Normal Forms, Bifurcations and Finitness Problems in Differential Equations, NATO Science Series II , vol. 137, 2004, Kluwer. preprint, 2002. MR2083252
- [17] Jebrane ( A.), Mardesic ( P.), Pelletier ( M.). — A generalization of Françoise's algorithm for calculating higher order Melnikov functions , Bull. Sci. Math.126, p. 705-732 (2002). Zbl1029.34081MR1941082
- [18] Jebrane ( A.), Mardesic ( P.), Pelletier ( M.). - A note on a generalization of Franoise's algorithm for calculating higher order Melnikov function, Bull. Sci. Math.128, p. 749-760 (2004). Zbl1274.37012MR2099104
- [19] Parsin ( A.N. ). — A generalization of the Jacobian variety , AMS Translations, Series 2, p. 187-196 (1969). Zbl0189.21501
- [20] Passman ( D. ). — The algebraic theory of group rings , Wiley, New York, 1977. MR470211
- [21] Pontryagin ( L.S.).— Über Autoschwingungssysteme, die den Hamiltonischen nahe liegen, Phys. Z. Sowjetunion6, 25-28 (1934) Zbl0010.02302
- ; On dynamics systems close to Hamiltonian systems, Zh. Eksp. Teor. Fiz.4, p. 234-238 (1934), in russian.
- [22] Roussarie ( R.). — Bifurcation of planar vector fields and Hilbert's sixteenth problem, Progress in Mathematics , vol. 164, Birkhäuser Verlag , Basel (1998). Zbl0898.58039MR1094374
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.