Higher order Poincaré-Pontryagin functions and iterated path integrals

Lubomir Gavrilov

Annales de la Faculté des sciences de Toulouse : Mathématiques (2005)

  • Volume: 14, Issue: 4, page 663-682
  • ISSN: 0240-2963

How to cite

top

Gavrilov, Lubomir. "Higher order Poincaré-Pontryagin functions and iterated path integrals." Annales de la Faculté des sciences de Toulouse : Mathématiques 14.4 (2005): 663-682. <http://eudml.org/doc/73662>.

@article{Gavrilov2005,
author = {Gavrilov, Lubomir},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {limit cycles; displacement map; polynomial foliation; period annulus; iterated path integrals; Gelfand-Leray form; monodromy representation; monodromy group},
language = {eng},
number = {4},
pages = {663-682},
publisher = {Université Paul Sabatier, Institut de Mathématiques},
title = {Higher order Poincaré-Pontryagin functions and iterated path integrals},
url = {http://eudml.org/doc/73662},
volume = {14},
year = {2005},
}

TY - JOUR
AU - Gavrilov, Lubomir
TI - Higher order Poincaré-Pontryagin functions and iterated path integrals
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 2005
PB - Université Paul Sabatier, Institut de Mathématiques
VL - 14
IS - 4
SP - 663
EP - 682
LA - eng
KW - limit cycles; displacement map; polynomial foliation; period annulus; iterated path integrals; Gelfand-Leray form; monodromy representation; monodromy group
UR - http://eudml.org/doc/73662
ER -

References

top
  1. [1] Arnold ( V.I. ). — Geometrical methods in the theory of ordinary differential equations, Grundlehr. Math. Wiss. , vol. 250, Springer-Verlag , New York (1988). Zbl0648.34002MR947141
  2. [2] Arnold ( V.I. ), Gusein-Zade ( S.M.), Varchenko ( A.N.). — Singularities of Differentiable Maps, vols. 1 and 2, Monographs in mathematics , Birkhäuser, Boston, 1985 and 1988. 
  3. [3] Briskin ( M. ) , Yomdin ( Y.). - Tangential Hilbert problem for Abel equation , preprint, 2003. 
  4. [4] Brudnyi ( A. ). — On the center problem for ordinary differential equation, arXiv:math 0301339 (2003). 
  5. [5] Chen ( K.-T. ).— Algebras of iterated path integrals and fundamental groups, Trans. AMS156, p. 359-379 (1971). Zbl0217.47705MR275312
  6. [6] Chen ( K.-T. ). — Iterated Path Integrals, Bull. AMS83 (1977) 831-879. Zbl0389.58001MR454968
  7. [7] Françoise ( J.-P.). — Successive derivatives of a first return map, application to the study of quadratic vector fields, Ergod. Theory and Dyn. Syst.16, p. 87-96 (1996). Zbl0852.34008MR1375128
  8. [8] Françoise ( J.-P. ). — Local bifurcations of limit cycles, Abel equations and Liénard systems, in Normal Forms, Bifurcations and Finitness Problems in Differential Equations, NATO Science Series II, vol. 137, 2004. 
  9. [9] Fulton ( W.). — Algebraic Topology, Springer , New York, 1995. Zbl0852.55001MR1343250
  10. [10] Gavrilov ( L.). - Petrov modules and zeros of Abelian integrals , Bull. Sci. Math.122, no. 8, p. 571-584 (1998). Zbl0964.32022MR1668534
  11. [11] Gavrilov ( L. ) , Iliev ( I.D.). — The displacement map associated to polynomial unfoldings of planar vector fields, arXiv:math.DS/0305301 (2003). 
  12. [12] Hain ( R.). — The geometry of the mixed Hodge structure on the fundamental group, Proc. of Simposia in Pure Math., 46, p. 247-282 (1987). Zbl0654.14006MR927984
  13. [13] Hain ( R.). - Iterated integrals and algebraic cycles: examples and prospects. Contemporary trends in algebraic geometry and algebraic topology (Tianjin, 2000), p. 55-118, Nankai Tracts Math., 5, World Sci. Publishing, River Edge, NJ, 2002. Zbl1065.14012MR1945356
  14. [14] Hall ( M.). — The Theory of Groups, AMS Chelsea Publishing, 1976. Zbl0354.20001MR414669
  15. [15] Hilbert ( D. ). — Mathematische probleme, Gesammelte Abhandlungen III, Springer-Verlag, Berlin, p. 403-479 (1935). 
  16. [16] Ilyashenko ( Y.S.). — Selected topics in differential equations with real and complex time, in Normal Forms, Bifurcations and Finitness Problems in Differential Equations, NATO Science Series II , vol. 137, 2004, Kluwer. preprint, 2002. MR2083252
  17. [17] Jebrane ( A.), Mardesic ( P.), Pelletier ( M.). — A generalization of Françoise's algorithm for calculating higher order Melnikov functions , Bull. Sci. Math.126, p. 705-732 (2002). Zbl1029.34081MR1941082
  18. [18] Jebrane ( A.), Mardesic ( P.), Pelletier ( M.). - A note on a generalization of Franoise's algorithm for calculating higher order Melnikov function, Bull. Sci. Math.128, p. 749-760 (2004). Zbl1274.37012MR2099104
  19. [19] Parsin ( A.N. ). — A generalization of the Jacobian variety , AMS Translations, Series 2, p. 187-196 (1969). Zbl0189.21501
  20. [20] Passman ( D. ). — The algebraic theory of group rings , Wiley, New York, 1977. MR470211
  21. [21] Pontryagin ( L.S.).— Über Autoschwingungssysteme, die den Hamiltonischen nahe liegen, Phys. Z. Sowjetunion6, 25-28 (1934) Zbl0010.02302
  22. ; On dynamics systems close to Hamiltonian systems, Zh. Eksp. Teor. Fiz.4, p. 234-238 (1934), in russian. 
  23. [22] Roussarie ( R.). — Bifurcation of planar vector fields and Hilbert's sixteenth problem, Progress in Mathematics , vol. 164, Birkhäuser Verlag , Basel (1998). Zbl0898.58039MR1094374

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.