Gaussian estimates for symmetric simple exclusion processes

Claudio Landim

Annales de la Faculté des sciences de Toulouse : Mathématiques (2005)

  • Volume: 14, Issue: 4, page 683-703
  • ISSN: 0240-2963

How to cite

top

Landim, Claudio. "Gaussian estimates for symmetric simple exclusion processes." Annales de la Faculté des sciences de Toulouse : Mathématiques 14.4 (2005): 683-703. <http://eudml.org/doc/73663>.

@article{Landim2005,
author = {Landim, Claudio},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {Gaussian tail estimates; transition probability; non-equilibrium Boltzmann-Gibbs principle},
language = {eng},
number = {4},
pages = {683-703},
publisher = {Université Paul Sabatier, Institut de Mathématiques},
title = {Gaussian estimates for symmetric simple exclusion processes},
url = {http://eudml.org/doc/73663},
volume = {14},
year = {2005},
}

TY - JOUR
AU - Landim, Claudio
TI - Gaussian estimates for symmetric simple exclusion processes
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 2005
PB - Université Paul Sabatier, Institut de Mathématiques
VL - 14
IS - 4
SP - 683
EP - 703
LA - eng
KW - Gaussian tail estimates; transition probability; non-equilibrium Boltzmann-Gibbs principle
UR - http://eudml.org/doc/73663
ER -

References

top
  1. [1] Bertini ( L. ), Zegarlinski ( B.). — Coercive inequalities for Kawasaki dynamics : The Product Case. Markov Proc. Rel. Fields5, p. 125-162 (1999). Zbl0934.60096MR1762171
  2. [2] Bertini ( L. ), Zegarlinski ( B.).— Coercive inequalities for Gibbs measures. J. Funct. Anal.162, p. 257-286 (1999). Zbl0932.60061MR1682059
  3. [3] Chang ( C.C. ), Yau ( H.T.). — Fluctuations of one-dimensional Ginzburg-Landau models in nonequilibrium. Commun. Math. Phys.145, p. 209-234 (1992). Zbl0754.76006MR1162798
  4. [4] Davies ( E.B. ). — Heat kernels and spectral theory , Cambridge University Press (1989 ). Zbl0699.35006MR990239
  5. [5] Janvresse ( E.), Quastel ( J.), Landim ( C.), Yau ( H.T.). — Relaxation to equilibrium of conservative dynamics I : zero range processes. Annals Probab.27, p. 325-360 (1999). Zbl0951.60095MR1681098
  6. [6] Kipnis ( C.) , Landim ( C.).— Scaling Limit of Interacting Particle Systems, Springer Verlag, Berlin (1999). Zbl0927.60002MR1707314
  7. [7] Ferrari ( P.A. ), Presutti ( E.), Scacciatelli ( E.), Vares ( M.E.). — The symmetric simple exclusion process, I: Probability estimates. Stoch. Process. Appl.39, p. 89-105 (1991). Zbl0749.60094MR1135087
  8. [8] Ferrari ( P.A. ), Presutti ( E.), Vares ( M.E.). — Non equilibrium fluctuations for a zero range process. Ann. Inst. Henri Poincaré, Probab et Stat.24, p. 237-268 (1988). Zbl0653.60099MR953119
  9. [9] Landim ( C. ). — Decay to equilibrium in L°° of finite interacting particle systems in infinite volume. Markov Proc. Rel. Fields.4, p. 517-534 (1998). Zbl0928.60093
  10. [10] Landim ( C. ), Yau ( H.T.). — Convergence to equilibrium of conservative particle systems on Zd. Annals Probab.31, p. 115-147 (2003). Zbl1015.60098MR1959788
  11. [11] Yau ( H.T. ). — Logarithmic Sobolev inequality for generalized exclusion processes, Prob. Th. rel. Fields109, p. 507-538 (1997). Zbl0903.60087MR1483598

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.