The space of bounded analytic functions on a region

Lee A. Rubel; A. L. Shields

Annales de l'institut Fourier (1966)

  • Volume: 16, Issue: 1, page 235-277
  • ISSN: 0373-0956

How to cite

top

Rubel, Lee A., and Shields, A. L.. "The space of bounded analytic functions on a region." Annales de l'institut Fourier 16.1 (1966): 235-277. <http://eudml.org/doc/73894>.

@article{Rubel1966,
author = {Rubel, Lee A., Shields, A. L.},
journal = {Annales de l'institut Fourier},
keywords = {functional analysis},
language = {eng},
number = {1},
pages = {235-277},
publisher = {Association des Annales de l'Institut Fourier},
title = {The space of bounded analytic functions on a region},
url = {http://eudml.org/doc/73894},
volume = {16},
year = {1966},
}

TY - JOUR
AU - Rubel, Lee A.
AU - Shields, A. L.
TI - The space of bounded analytic functions on a region
JO - Annales de l'institut Fourier
PY - 1966
PB - Association des Annales de l'Institut Fourier
VL - 16
IS - 1
SP - 235
EP - 277
LA - eng
KW - functional analysis
UR - http://eudml.org/doc/73894
ER -

References

top
  1. [1] L. AHLFORS and L. SARIO, Riemann Surfaces, Princeton (1960). Zbl0196.33801MR22 #5729
  2. [2] S. BANACH, Théorie des Opérations Linéaires, Warszawa-Lwow (1932). Zbl0005.20901JFM58.0420.01
  3. [3] A. BEURLING, On two problems concerning linear transformations in Hilbert space, Acta Math., 81 (1949), 239-255. Zbl0033.37701MR10,381e
  4. [4] L. BROWN, A. L. SHIELDS and K. ZELLER, On absolutely convergent exponential sums, Trans. Amer. Math. Soc., 96 (1960), 162-183. Zbl0096.05103MR26 #332
  5. [5] R. C. BUCK, Algebraic properties of classes of analytic functions, Seminars on Analytic Functions, vol. II, Princeton (1957), 175-188. Zbl0196.43603
  6. [6] L. CARLESON, Interpolations by bounded analytic functions and the corona problem, Ann. of Math. (2) 76 (1962), 547-559. Zbl0112.29702MR25 #5186
  7. [7] L. CARLESON, On bounded analytic functions and closure problems, Ark. Mat. 2 (1952), 283-291. Zbl0047.35301MR14,630d
  8. [8] H. CARTAN, Elementary Theory of Analytic Functions of One or Several Complex Variables, Paris (1963). Zbl0121.30501MR27 #4911
  9. [9] N. DUNFORD and J. SCHWARTZ, Linear Operators, Part I, New York (1958). Zbl0084.10402MR22 #8302
  10. [10] V. P. HAVIN, On the space of bounded regular functions, Sibirsk. Mat. Z., 2 (1961), 622-638 (See also the abstract, under the same title, Dokl. Adak. Nauk SSSR, 131 (1960), 40-43, translated in Soviet Math., 1 (1960), 202-204). Zbl0174.12003
  11. [11] O. HELMER, Divisibility properties of integral functions, Duke Math. J., 6 (1940), 38-47. Zbl0023.23904JFM66.0105.02
  12. [12] H. HELSON, Lectures on Invariant Subspaces, New York (1964). Zbl0119.11303MR30 #1409
  13. [13] E. HILLE and R. S. PHILLIPS, Functional Analysis and Semigroups, Amer. Math. Soc. Colloquium Publications, 31 (1957). Zbl0078.10004MR19,664d
  14. [14] K. HOFFMAN, Banach Spaces of Analytic Functions, Englewood Cliffs (1962). Zbl0117.34001MR24 #A2844
  15. [15] J. L. KELLEY, General Topology, New York (1955). Zbl0066.16604MR16,1136c
  16. [16] J. L. KELLEY, I. NAMIOKA et al., Linear Topological Spaces, Princeton (1963). Zbl0115.09902MR29 #3851
  17. [17] K. DE LEEUW and W. RUDIN, Extreme points and extremum problems in H1, Pacific J. Math., 8 (1958), 467-485. Zbl0084.27503MR20 #5426
  18. [18] E. MICHAEL, Locally Multiplicatively-convex Topological Algebras, Mem. Amer. Math. Soc., 11 (1952). Zbl0047.35502MR14,482a
  19. [19] W. W. ROGOSINSKI and H. S. SHAPIRO, On certain extremum problems for analytic functions, Acta. Math., 90 (1953), 287-318. Zbl0051.05604MR15,516a
  20. [20] L. A. RUBEL and A. L. SHIELDS, Bounded approximation by polynomials, Acta Math., 112 (1964), 145-162. Zbl0136.37404MR30 #5104
  21. [21] L. A. RUBEL and A. L. SHIELDS, Weak topologies on the bounded holomorphic functions, Bull. Amer. Math. Soc. (1965). Zbl0135.16903MR30 #2364
  22. [22] W. RUDIN, Essential boundary points, Bull. Amer. Math. Soc. 70 (1964), 321-324. Zbl0133.03605MR28 #3167
  23. [23] A. E. TAYLOR, Banach spaces of functions analytic in the unit circle II, Studia Math., 12 (1951), 25-50. Zbl0042.35703MR13,252a
  24. [24] J. WOLFF, Sur les séries Σ Ak/z — αk, C. R. Acad. Sci. Paris, 173 (1921), 1057-1058, 1327-1328. JFM48.0320.01

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.