Invariant subspaces on open Riemann surfaces

Morisuke Hasumi

Annales de l'institut Fourier (1974)

  • Volume: 24, Issue: 4, page 241-286
  • ISSN: 0373-0956

Abstract

top
Let R be a hyperbolic Riemann surface, d χ a harmonic measure supported on the Martin boundary of R , and H ( d χ ) the subalgebra of L ( d χ ) consisting of the boundary values of bounded analytic functions on R . This paper gives a complete classification of the closed H ( d χ ) -submodules of L p ( d χ ) , 1 p (weakly * closed, if p = , when R is regular and admits a sufficiently large family of bounded multiplicative analytic functions satisfying an approximation condition. It also gives, as a corollary, a corresponding result for the Hardy spaces on R . A generalized Cauchy theorem and its converse for R are proved in the course of establishing the main result. The theory of Green lines is also used effectively.

How to cite

top

Hasumi, Morisuke. "Invariant subspaces on open Riemann surfaces." Annales de l'institut Fourier 24.4 (1974): 241-286. <http://eudml.org/doc/74202>.

@article{Hasumi1974,
abstract = {Let $R$ be a hyperbolic Riemann surface, $d_\chi $ a harmonic measure supported on the Martin boundary of $R$, and $H^\infty (d\chi )$ the subalgebra of $L^\infty (d\chi )$ consisting of the boundary values of bounded analytic functions on $R$. This paper gives a complete classification of the closed $H^\infty (d\chi )$-submodules of $L^p(d\chi )$, $1\le p\le \infty $ (weakly$\{\}^*$ closed, if $p=\infty $, when $R$ is regular and admits a sufficiently large family of bounded multiplicative analytic functions satisfying an approximation condition. It also gives, as a corollary, a corresponding result for the Hardy spaces on $R$. A generalized Cauchy theorem and its converse for $R$ are proved in the course of establishing the main result. The theory of Green lines is also used effectively.},
author = {Hasumi, Morisuke},
journal = {Annales de l'institut Fourier},
language = {eng},
number = {4},
pages = {241-286},
publisher = {Association des Annales de l'Institut Fourier},
title = {Invariant subspaces on open Riemann surfaces},
url = {http://eudml.org/doc/74202},
volume = {24},
year = {1974},
}

TY - JOUR
AU - Hasumi, Morisuke
TI - Invariant subspaces on open Riemann surfaces
JO - Annales de l'institut Fourier
PY - 1974
PB - Association des Annales de l'Institut Fourier
VL - 24
IS - 4
SP - 241
EP - 286
AB - Let $R$ be a hyperbolic Riemann surface, $d_\chi $ a harmonic measure supported on the Martin boundary of $R$, and $H^\infty (d\chi )$ the subalgebra of $L^\infty (d\chi )$ consisting of the boundary values of bounded analytic functions on $R$. This paper gives a complete classification of the closed $H^\infty (d\chi )$-submodules of $L^p(d\chi )$, $1\le p\le \infty $ (weakly${}^*$ closed, if $p=\infty $, when $R$ is regular and admits a sufficiently large family of bounded multiplicative analytic functions satisfying an approximation condition. It also gives, as a corollary, a corresponding result for the Hardy spaces on $R$. A generalized Cauchy theorem and its converse for $R$ are proved in the course of establishing the main result. The theory of Green lines is also used effectively.
LA - eng
UR - http://eudml.org/doc/74202
ER -

References

top
  1. [1] A. BEURLING, On two problems concerning linear transformations in Hilbert space, Acta Math., 81 (1949), 239-255. Zbl0033.37701MR10,381e
  2. [2] M. BRELOT et G. CHOQUET, Espaces et lignes de Green, Ann. Inst. Fourier, Grenoble, 3 (1952), 199-264. Zbl0046.32701MR16,34e
  3. [3] C. CONSTANTINESCU and A. CORNEA, Ideale Ränder Riemannscher Flächen, Ergebnisse der Mathematik und ihrer Grenzgebiete, 32, Springer, Berlin, 1963. Zbl0112.30801MR28 #3151
  4. [4] F. FORELLI, Bounded holomorphie functions and projections, Illinois J. Math., 10 (1966), 367-380. Zbl0141.31401MR33 #1754
  5. [5] M. HASUMI, Invariant subspace theorems for finite Riemann surfaces, Canad. J. Math., 18 (1966), 240-255. Zbl0172.41603MR32 #8200
  6. [6] C. NEVILLE, Ideals and submodules of analytic functions on infinitely connected plane domains. Thesis, University of Illinois at Urbana-Champaign, 1972. 
  7. [7] C. NEVILLE, Invariant subspaces of Hardy classes on infinitely connected plane domains, Bull. Amer. Math. Soc., 78 (1972), 857-860. Zbl0266.46040MR46 #364
  8. [8] C. NEVILLE, Invariant subspaces of Hardy classes on infinitely connected open surfaces (to appear). Zbl0314.46052
  9. [9] A. READ, A converse of Cauchy's theorem and applications to extremal problems, Acta Math., 100 (1958), 1-22. Zbl0142.04503MR20 #4640
  10. [10] H. ROYDEN, Boundary values of analytic and harmonic functions, Math. Z., 78 (1962), 1-24. Zbl0196.33701MR25 #2190
  11. [11] L. RUBEL and A. SHIELDS, The space of bounded analytic functions on a region, Ann. Inst. Fourier, Grenoble, 16 (1966), 235-277. Zbl0152.13202MR33 #6440
  12. [12] L. SARIO and M. NAKAI, Classification theory of Riemann surfaces, Die Grundlehren der mathematischen Wissenschaften, 164, Springer, Berlin, 1970. Zbl0199.40603MR41 #8660
  13. [13] T. P. SRINIVASAN, Doubly invariant subspaces, Pacific J. Math., 14 (1964), 701-707. Zbl0136.10904MR29 #1528
  14. [14] T. P. SRINIVASAN, Simply invariant subspaces and generalized analytic functions, Proc. Amer. Math. Soc., 16 (1965), 813-818. Zbl0136.11002MR34 #8219
  15. [15] M. VOICHICK, Ideals and invariant subspaces of analytic functions, Trans. Amer. Math. Soc., 111 (1964), 493-512. Zbl0147.11502MR28 #4129
  16. [16] M. VOICHICK, Invariant subspaces on Riemann surfaces, Canad. J. Math., 18 (1966), 399-403. Zbl0147.11501MR32 #8201
  17. [17] H. WIDOM, The maximum principle for multiple-valued analytic functions, Acta Math., 126 (1971), 63-82. Zbl0203.38302MR43 #5034
  18. [18] H. WIDOM, Hp sections of vector bundles over Riemann surfaces, Ann. of Math., 94 (1971), 304-324. Zbl0238.32014MR44 #5976
  19. [19] L. NAÏM, Sur le rôle de la frontière de R. S. Martin dans la théorie du potentiel, Ann. inst. Fourier, Grenoble, 7 (1957), 183-281. Zbl0086.30603MR20 #6608

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.