Le rang de certaines variétés closes

Maurice Garançon

Annales de l'institut Fourier (1970)

  • Volume: 20, Issue: 1, page 1-19
  • ISSN: 0373-0956

Abstract

top
Let M be a closed and connected n -manifold with a locally free action φ of R n - 1 on M , we prove : if π 1 ( M ) has no element of finite order the inclusion of a leaf of φ into M induces a monomorphism between the fundamentals groups.As an application we prove that the rank of S 3 × T n - 3 is n - 2 .

How to cite

top

Garançon, Maurice. "Le rang de certaines variétés closes." Annales de l'institut Fourier 20.1 (1970): 1-19. <http://eudml.org/doc/74001>.

@article{Garançon1970,
abstract = {Soit $M$ une $n$-variété close et connexe munie d’une action localement libre $\varphi $ de $\{\bf R\}^\{n-1\}$ sur $M$, on démontre : si $\pi _1(M)$ ne contient pas d’éléments d’ordre fini, l’inclusion de toute feuille de $\varphi $ dans $M$ induit un monomorphisme des groupes fondamentaux.Comme application on prouve que le rang de $S^3\times T^\{n-3\}$ est $n-2$.},
author = {Garançon, Maurice},
journal = {Annales de l'institut Fourier},
keywords = {topology},
language = {fre},
number = {1},
pages = {1-19},
publisher = {Association des Annales de l'Institut Fourier},
title = {Le rang de certaines variétés closes},
url = {http://eudml.org/doc/74001},
volume = {20},
year = {1970},
}

TY - JOUR
AU - Garançon, Maurice
TI - Le rang de certaines variétés closes
JO - Annales de l'institut Fourier
PY - 1970
PB - Association des Annales de l'Institut Fourier
VL - 20
IS - 1
SP - 1
EP - 19
AB - Soit $M$ une $n$-variété close et connexe munie d’une action localement libre $\varphi $ de ${\bf R}^{n-1}$ sur $M$, on démontre : si $\pi _1(M)$ ne contient pas d’éléments d’ordre fini, l’inclusion de toute feuille de $\varphi $ dans $M$ induit un monomorphisme des groupes fondamentaux.Comme application on prouve que le rang de $S^3\times T^{n-3}$ est $n-2$.
LA - fre
KW - topology
UR - http://eudml.org/doc/74001
ER -

References

top
  1. [1] E. LIMA, “Commuting vector fields on S3”, Annals of Math. 8, (1965). Zbl0137.17801MR30 #1517
  2. [2] E. LIMA, Common singularities of commuting vector fields on 2-manifolds, Comment. Math. Helv. 39 (1964), 97-110. Zbl0124.16101MR31 #731
  3. [3] S.P. NOVIKOV, 1) “The Topology Summer inst. Seattle 1963”. Russiom Math. Surveys, vol. 20 (1965). Zbl0125.39804MR33 #716
  4. 2) “Topology of Foliations”, Trudy mosk. math. Obshlch 14, n° 513.83. 
  5. [4] H. ROSENBERG, “Action of Rn on manifolds” Comm. Math. Helvetici vol. 41 (3) (1966-1967). Zbl0145.20301MR34 #6794
  6. [5] H. ROSENBERG, “Rank of S2 x S1” American J. of Math., vol. 87 (1965). Zbl0132.19803MR31 #764
  7. [6] H. ROSENBERG, “Foliations by planes” Topology, vol. 7 (1968). Zbl0157.30504MR37 #3595
  8. [7] H. ROSENBERG, “Singularities of R2 actions” Topology, vol. 7 (1968). Zbl0157.30601MR37 #3596
  9. [8] R. THOM, “Un lemme sur les applications différentiables”. Bol. Soc. Math. Mex. (2) (1956) 59-71. Zbl0075.32201MR21 #910

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.