A property of Fourier Stieltjes transforms on the discrete group of real numbers
Annales de l'institut Fourier (1970)
- Volume: 20, Issue: 2, page 325-334
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topDomar, Yngve. "A property of Fourier Stieltjes transforms on the discrete group of real numbers." Annales de l'institut Fourier 20.2 (1970): 325-334. <http://eudml.org/doc/74018>.
@article{Domar1970,
abstract = {Let $\mu $ be a Fourier-Stieltjes transform, defined on the discrete real line and such that the corresponding measure on the dual group vanishes on the set of characters, continuous on $\{\bf R\}$. Then for every $\varepsilon >0$, $\lbrace x\in \{\bf R\}\vert \, \{\rm Re\}\, (\mu (x))>\varepsilon \rbrace $ has a vanishing interior Lebesgue measure. If $\varepsilon =0$ the statement is not generally true. The result is applied to prove a theorem of Rosenthal.},
author = {Domar, Yngve},
journal = {Annales de l'institut Fourier},
keywords = {integral equations, integral transforms},
language = {eng},
number = {2},
pages = {325-334},
publisher = {Association des Annales de l'Institut Fourier},
title = {A property of Fourier Stieltjes transforms on the discrete group of real numbers},
url = {http://eudml.org/doc/74018},
volume = {20},
year = {1970},
}
TY - JOUR
AU - Domar, Yngve
TI - A property of Fourier Stieltjes transforms on the discrete group of real numbers
JO - Annales de l'institut Fourier
PY - 1970
PB - Association des Annales de l'Institut Fourier
VL - 20
IS - 2
SP - 325
EP - 334
AB - Let $\mu $ be a Fourier-Stieltjes transform, defined on the discrete real line and such that the corresponding measure on the dual group vanishes on the set of characters, continuous on ${\bf R}$. Then for every $\varepsilon >0$, $\lbrace x\in {\bf R}\vert \, {\rm Re}\, (\mu (x))>\varepsilon \rbrace $ has a vanishing interior Lebesgue measure. If $\varepsilon =0$ the statement is not generally true. The result is applied to prove a theorem of Rosenthal.
LA - eng
KW - integral equations, integral transforms
UR - http://eudml.org/doc/74018
ER -
References
top- [1] H. ROSENTHAL, A characterization of restrictions of Fourier-Stieltjes transforms, Pac. J. Math. 23 (1967) 403-418. Zbl0155.18901MR36 #3065
- [2] W. RUDIN, Fourier analysis on groups. New York 1962. Zbl0107.09603MR27 #2808
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.