The growth of entire solutions of differential equations of finite and infinite order
Annales de l'institut Fourier (1972)
- Volume: 22, Issue: 1, page 211-238
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topGruman, Lawrence. "The growth of entire solutions of differential equations of finite and infinite order." Annales de l'institut Fourier 22.1 (1972): 211-238. <http://eudml.org/doc/74066>.
@article{Gruman1972,
abstract = {For certain Fréchet spaces of entire functions of several variables satisfying some specified growth conditions, we define a constant coefficient differential operator $\check\{\alpha \}$ as the transpose of a convolution operation in the dual space of continuous linear functionals and show that for $f(z)$ in one of these spaces, their always exists a solution of the differential equation $\check\{\alpha \}(x) = f$ in the same space.},
author = {Gruman, Lawrence},
journal = {Annales de l'institut Fourier},
language = {eng},
number = {1},
pages = {211-238},
publisher = {Association des Annales de l'Institut Fourier},
title = {The growth of entire solutions of differential equations of finite and infinite order},
url = {http://eudml.org/doc/74066},
volume = {22},
year = {1972},
}
TY - JOUR
AU - Gruman, Lawrence
TI - The growth of entire solutions of differential equations of finite and infinite order
JO - Annales de l'institut Fourier
PY - 1972
PB - Association des Annales de l'Institut Fourier
VL - 22
IS - 1
SP - 211
EP - 238
AB - For certain Fréchet spaces of entire functions of several variables satisfying some specified growth conditions, we define a constant coefficient differential operator $\check{\alpha }$ as the transpose of a convolution operation in the dual space of continuous linear functionals and show that for $f(z)$ in one of these spaces, their always exists a solution of the differential equation $\check{\alpha }(x) = f$ in the same space.
LA - eng
UR - http://eudml.org/doc/74066
ER -
References
top- [1] P.D. BARRY, The minimum modulus of small integral and subharmonic functions, Proc. London Math. Soc. (3) 12 (1962), 445-495. Zbl0196.41603MR25 #3172
- [2] R.C. GUNNING and H. ROSSI, Analytic Functions of Several Complex Variables, Englewood Cliffs, N.J., Prentice-Hall, (1965). Zbl0141.08601MR31 #4927
- [3] L. HORMANDER, An Introduction to complex analysis in several variables, Princeton, N.J., Van Nostrand, 1966. Zbl0138.06203MR34 #2933
- [4] P. LELONG, Non-continuous indicators for entire functions of n ≥ 2 variables and finite order, Proc. Sym. Pure Math. 11 (1968), p. 285-297. Zbl0177.34102MR38 #3464
- [5] B.Ja. LEVIN, Distribution of zeros of entire functions, Translations of Mathematical Monographs, Vol. 5, A.M.S., Providence, R.I. 1964. Zbl0152.06703
- [6] B. MALGRANGE, Existence et approximations des solutions des équations aux dérivées partielles et des équations de convolution, Ann. Inst. Fourier, Grenoble, t. 6, 1955-1956, 271-355 (Thèse Sc. math., Paris, 1955). Zbl0071.09002MR19,280a
- [7] A. MARTINEAU, Sur les fonctionnelles analytiques et la transformation de Fourier-Borel, J. Anal. math. Jérusalem, t. 11, (1963), 1-164 (Thèse Sc. math., Paris, 1963). Zbl0124.31804
- [8] A. MARTINEAU, Equations différentielles d'ordre infini, Bull. Soc. math. France, 95, (1967), 109-154. Zbl0167.44202
- [9] F. TREVES, Linear Partial Differential Equations with Constant Coefficients, New York, Gordon and Breach (1966). Zbl0164.40602
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.