Mittelergodische Halbgruppen linearer Operatoren

Rainer J. Nagel

Annales de l'institut Fourier (1973)

  • Volume: 23, Issue: 4, page 75-87
  • ISSN: 0373-0956

Abstract

top
A semigroup H in L s ( E ) , E a Banach space, is called mean ergodic, if its closed convex hull in L s ( E ) has a zero element. Compact groups, compact abelian semigroups or contractive semigroups on Hilbert spaces are mean ergodic.Banach lattices prove to be a natural frame for further mean ergodic theorems: let H be a bounded semigroup of positive operators on a Banach lattice E with order continuous norm. H is mean ergodic if there is a H -subinvariant quasi-interior point of E + and a H ' -subinvariant strictly positive linear form in E '

How to cite

top

Nagel, Rainer J.. "Mittelergodische Halbgruppen linearer Operatoren." Annales de l'institut Fourier 23.4 (1973): 75-87. <http://eudml.org/doc/74155>.

@article{Nagel1973,
author = {Nagel, Rainer J.},
journal = {Annales de l'institut Fourier},
language = {ger},
number = {4},
pages = {75-87},
publisher = {Association des Annales de l'Institut Fourier},
title = {Mittelergodische Halbgruppen linearer Operatoren},
url = {http://eudml.org/doc/74155},
volume = {23},
year = {1973},
}

TY - JOUR
AU - Nagel, Rainer J.
TI - Mittelergodische Halbgruppen linearer Operatoren
JO - Annales de l'institut Fourier
PY - 1973
PB - Association des Annales de l'Institut Fourier
VL - 23
IS - 4
SP - 75
EP - 87
LA - ger
UR - http://eudml.org/doc/74155
ER -

References

top
  1. [1] F. ARIBAUD, Un théorème ergodique pour les espaces L1, Journ. Functional Anal., 5, 395-411 (1970). Zbl0196.07603MR41 #3708
  2. [2] J. F. BERGLUND et K. H. HOFMANN, Compact semitopological semigroups and weakly almost periodic functions, Lecture Notes Math. 42, Berlin-Heidelberg-New York : Springer 1967. Zbl0155.18702MR36 #6531
  3. [3] M. M. DAY, Fixed point theorems for compact convex sets, Ill. Journ. Math. 5, 585-590 (1961). Zbl0097.31705MR25 #1547
  4. [4] M. M. DAY, Semigroups and Amenability. Enthalten in : Folley, K. W. : Semigroups, New York-London : Academic Press 1969. Zbl0191.01801MR42 #411
  5. [5] N. DUNFORD et J. T. SCHWARTZ, Linear Operators, Part I. New York : Interscience 1958. Zbl0084.10402MR22 #8302
  6. [6] K. JACOBS, Neuere Methoden und Ergebnisse der Ergodentheorie. Ergebnisse der Math. Berlin-Göttingen-Heidelberg : Springer 1960. Zbl0102.32903MR23 #A1000
  7. [7] R. J. NAGEL, Ordnungsstetigkeit in Banachverbänden. Manuscripta Math. 9, 9-27 (1973). Zbl0248.46010MR49 #5772
  8. [8] R. J. NAGEL et M. WOLFF, Abstract dynamical systems with an application to operators with discrete spectrum, Archiv der Math. 23, 170-176 (1972). Zbl0233.47013MR47 #878
  9. [9] A. L. PERESSINI, Ordered Topological Vector Spaces. New York : Harper and Row 1967. Zbl0169.14801MR37 #3315
  10. [10] H. H. SCHAEFER, Invariant ideals of positive operators in C(X), I. Ill. Journ. Math. 11, 703-715 (1967). Zbl0168.11801MR36 #1996
  11. [11] H. H. SCHAEFER, Topological Vector Spaces, 3rd print. Berlin-Heidelberg-New York : Springer 1971. Zbl0217.16002MR49 #7722
  12. [12] H. H. SCHAEFER, On the representation of Banach lattices by continuous numerical functions. Math. Z. 125, 215-232 (1972). Zbl0216.40702MR45 #7441
  13. [13] R. SINE, A mean ergodic theorem. Proc. Amer. Math. Soc., 24, 438-439 (1970). Zbl0191.42204MR40 #5825

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.