Mittelergodische Halbgruppen linearer Operatoren

Rainer J. Nagel

Annales de l'institut Fourier (1973)

  • Volume: 23, Issue: 4, page 75-87
  • ISSN: 0373-0956

Abstract

top
A semigroup H in L s ( E ) , E a Banach space, is called mean ergodic, if its closed convex hull in L s ( E ) has a zero element. Compact groups, compact abelian semigroups or contractive semigroups on Hilbert spaces are mean ergodic.Banach lattices prove to be a natural frame for further mean ergodic theorems: let H be a bounded semigroup of positive operators on a Banach lattice E with order continuous norm. H is mean ergodic if there is a H -subinvariant quasi-interior point of E + and a H ' -subinvariant strictly positive linear form in E '

How to cite

top

Nagel, Rainer J.. "Mittelergodische Halbgruppen linearer Operatoren." Annales de l'institut Fourier 23.4 (1973): 75-87. <http://eudml.org/doc/74155>.

@article{Nagel1973,
author = {Nagel, Rainer J.},
journal = {Annales de l'institut Fourier},
language = {ger},
number = {4},
pages = {75-87},
publisher = {Association des Annales de l'Institut Fourier},
title = {Mittelergodische Halbgruppen linearer Operatoren},
url = {http://eudml.org/doc/74155},
volume = {23},
year = {1973},
}

TY - JOUR
AU - Nagel, Rainer J.
TI - Mittelergodische Halbgruppen linearer Operatoren
JO - Annales de l'institut Fourier
PY - 1973
PB - Association des Annales de l'Institut Fourier
VL - 23
IS - 4
SP - 75
EP - 87
LA - ger
UR - http://eudml.org/doc/74155
ER -

References

top
  1. [1] F. ARIBAUD, Un théorème ergodique pour les espaces L1, Journ. Functional Anal., 5, 395-411 (1970). Zbl0196.07603MR41 #3708
  2. [2] J. F. BERGLUND et K. H. HOFMANN, Compact semitopological semigroups and weakly almost periodic functions, Lecture Notes Math. 42, Berlin-Heidelberg-New York : Springer 1967. Zbl0155.18702MR36 #6531
  3. [3] M. M. DAY, Fixed point theorems for compact convex sets, Ill. Journ. Math. 5, 585-590 (1961). Zbl0097.31705MR25 #1547
  4. [4] M. M. DAY, Semigroups and Amenability. Enthalten in : Folley, K. W. : Semigroups, New York-London : Academic Press 1969. Zbl0191.01801MR42 #411
  5. [5] N. DUNFORD et J. T. SCHWARTZ, Linear Operators, Part I. New York : Interscience 1958. Zbl0084.10402MR22 #8302
  6. [6] K. JACOBS, Neuere Methoden und Ergebnisse der Ergodentheorie. Ergebnisse der Math. Berlin-Göttingen-Heidelberg : Springer 1960. Zbl0102.32903MR23 #A1000
  7. [7] R. J. NAGEL, Ordnungsstetigkeit in Banachverbänden. Manuscripta Math. 9, 9-27 (1973). Zbl0248.46010MR49 #5772
  8. [8] R. J. NAGEL et M. WOLFF, Abstract dynamical systems with an application to operators with discrete spectrum, Archiv der Math. 23, 170-176 (1972). Zbl0233.47013MR47 #878
  9. [9] A. L. PERESSINI, Ordered Topological Vector Spaces. New York : Harper and Row 1967. Zbl0169.14801MR37 #3315
  10. [10] H. H. SCHAEFER, Invariant ideals of positive operators in C(X), I. Ill. Journ. Math. 11, 703-715 (1967). Zbl0168.11801MR36 #1996
  11. [11] H. H. SCHAEFER, Topological Vector Spaces, 3rd print. Berlin-Heidelberg-New York : Springer 1971. Zbl0217.16002MR49 #7722
  12. [12] H. H. SCHAEFER, On the representation of Banach lattices by continuous numerical functions. Math. Z. 125, 215-232 (1972). Zbl0216.40702MR45 #7441
  13. [13] R. SINE, A mean ergodic theorem. Proc. Amer. Math. Soc., 24, 438-439 (1970). Zbl0191.42204MR40 #5825

NotesEmbed ?

top

You must be logged in to post comments.