Mittelergodische Halbgruppen linearer Operatoren
Annales de l'institut Fourier (1973)
- Volume: 23, Issue: 4, page 75-87
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] F. ARIBAUD, Un théorème ergodique pour les espaces L1, Journ. Functional Anal., 5, 395-411 (1970). Zbl0196.07603MR41 #3708
- [2] J. F. BERGLUND et K. H. HOFMANN, Compact semitopological semigroups and weakly almost periodic functions, Lecture Notes Math. 42, Berlin-Heidelberg-New York : Springer 1967. Zbl0155.18702MR36 #6531
- [3] M. M. DAY, Fixed point theorems for compact convex sets, Ill. Journ. Math. 5, 585-590 (1961). Zbl0097.31705MR25 #1547
- [4] M. M. DAY, Semigroups and Amenability. Enthalten in : Folley, K. W. : Semigroups, New York-London : Academic Press 1969. Zbl0191.01801MR42 #411
- [5] N. DUNFORD et J. T. SCHWARTZ, Linear Operators, Part I. New York : Interscience 1958. Zbl0084.10402MR22 #8302
- [6] K. JACOBS, Neuere Methoden und Ergebnisse der Ergodentheorie. Ergebnisse der Math. Berlin-Göttingen-Heidelberg : Springer 1960. Zbl0102.32903MR23 #A1000
- [7] R. J. NAGEL, Ordnungsstetigkeit in Banachverbänden. Manuscripta Math. 9, 9-27 (1973). Zbl0248.46010MR49 #5772
- [8] R. J. NAGEL et M. WOLFF, Abstract dynamical systems with an application to operators with discrete spectrum, Archiv der Math. 23, 170-176 (1972). Zbl0233.47013MR47 #878
- [9] A. L. PERESSINI, Ordered Topological Vector Spaces. New York : Harper and Row 1967. Zbl0169.14801MR37 #3315
- [10] H. H. SCHAEFER, Invariant ideals of positive operators in C(X), I. Ill. Journ. Math. 11, 703-715 (1967). Zbl0168.11801MR36 #1996
- [11] H. H. SCHAEFER, Topological Vector Spaces, 3rd print. Berlin-Heidelberg-New York : Springer 1971. Zbl0217.16002MR49 #7722
- [12] H. H. SCHAEFER, On the representation of Banach lattices by continuous numerical functions. Math. Z. 125, 215-232 (1972). Zbl0216.40702MR45 #7441
- [13] R. SINE, A mean ergodic theorem. Proc. Amer. Math. Soc., 24, 438-439 (1970). Zbl0191.42204MR40 #5825