Completeness and existence of bounded biharmonic functions on a riemannian manifold
Annales de l'institut Fourier (1974)
- Volume: 24, Issue: 1, page 311-317
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topSario, Leo. "Completeness and existence of bounded biharmonic functions on a riemannian manifold." Annales de l'institut Fourier 24.1 (1974): 311-317. <http://eudml.org/doc/74166>.
@article{Sario1974,
abstract = {A.S. Galbraith has communicated to us the following intriguing problem: does the completeness of a manifold imply, or is it implied by, the emptiness of the class $H^2B$ of bounded nonharmonic biharmonic functions? Among all manifolds considered thus far in biharmonic classification theory (cf. Bibliography), those that are complete fail to carry $H^2B$-functions, and one might suspect that this is always the case. We shall show, however, that there do exist complete manifolds of any dimension that carry $H^2B$-functions. Moreover, there exist both complete and incomplete manifolds not permitting these functions, and, trivially, incomplete manifolds possessing them.},
author = {Sario, Leo},
journal = {Annales de l'institut Fourier},
language = {eng},
number = {1},
pages = {311-317},
publisher = {Association des Annales de l'Institut Fourier},
title = {Completeness and existence of bounded biharmonic functions on a riemannian manifold},
url = {http://eudml.org/doc/74166},
volume = {24},
year = {1974},
}
TY - JOUR
AU - Sario, Leo
TI - Completeness and existence of bounded biharmonic functions on a riemannian manifold
JO - Annales de l'institut Fourier
PY - 1974
PB - Association des Annales de l'Institut Fourier
VL - 24
IS - 1
SP - 311
EP - 317
AB - A.S. Galbraith has communicated to us the following intriguing problem: does the completeness of a manifold imply, or is it implied by, the emptiness of the class $H^2B$ of bounded nonharmonic biharmonic functions? Among all manifolds considered thus far in biharmonic classification theory (cf. Bibliography), those that are complete fail to carry $H^2B$-functions, and one might suspect that this is always the case. We shall show, however, that there do exist complete manifolds of any dimension that carry $H^2B$-functions. Moreover, there exist both complete and incomplete manifolds not permitting these functions, and, trivially, incomplete manifolds possessing them.
LA - eng
UR - http://eudml.org/doc/74166
ER -
References
top- [1] D. Hada, L. Sario, C. Wang, Dirichlet finite biharmonic functions on the Poincaré N-ball, J. Reine Angew. Math. (to appear). Zbl0296.31013
- [2] D. Hada, L. Sario, C. Wang, N-manifolds carrying bounded but no Dirichlet finite harmonic functions, Nagoya Math. J. (to appear). Zbl0264.31004
- [3] Y.K. Kwon, L. Sario, B. Walsh, Behavior of biharmonic functions on Wiener's and Royden's compactifications, Ann. Inst. Fourier (Grenoble) 21 (1971), 217-226. Zbl0208.13703MR49 #5385
- [4] N. Mirsky, L. Sario, C. Wang, Bounded polyharmonic functions and the dimension of the manifold, J. Math. Kyoto Univ., 13 (1973), 529-535. Zbl0284.31007MR50 #2530
- [5] M. Nakai, Dirichlet finite biharmonic functions on the plane with distorted metrics, (to appear). Zbl0268.31009
- [6] M. Nakai, L. Sario, Completeness and function-theoretic degeneracy of Riemannian spaces, Proc. Nat. Acad. Sci., 57 (1967), 29-31. Zbl0168.08903MR36 #4583
- [7] M. Nakai, L. Sario, Biharmonic classification of Riemannian manifolds, Bull. Amer. Math. Soc., 77 (1971), 432-436. Zbl0253.31011MR43 #3965
- [8] M. Nakai, L. Sario, Quasiharmonic classification of Riemannian manifolds, Proc. Amer. Math. Soc., 31 (1972), 165-169. Zbl0229.31006MR44 #4692
- [9] M. Nakai, L. Sario, Dirichlet finite biharmonic functions with Dirichlet finite Laplacians, Math. Z., 122 (1971), 203-216. Zbl0263.31006MR45 #2616
- [10] M. Nakai, L. Sario, A property of biharmonic functions with Dirichlet finite Laplacians, Math. Scand., 29 (1971), 307-316. Zbl0246.31009MR46 #9897
- [11] M. Nakai, L. Sario, Existence of Dirichlet finite biharmonic functions, Ann. Acad. Sci. Fenn. A.I, 532 (1973), 1-34. Zbl0264.31008MR54 #13781
- [12] M. Nakai, L. Sario, Existence of bounded biharmonic functions, J. Reine Angew. Math. 259 (1973), 147-156. Zbl0251.31003MR47 #9482
- [13] M. Nakai, L. Sario, Existence of bounded Dirichlet finite biharmonic functions, Ann. Acad. Sci. Fenn. A.I., 505 (1972), 1-12. Zbl0236.31003MR54 #10596
- [14] M. Nakai, L. Sario, Biharmonic functions on Riemannian manifolds, Continuum Mechanics and Related Problems of Analysis, Nauka, Moscow, 1972, 329-335. Zbl0253.31004MR52 #6002
- [15] L. Sario, Biharmonic and quasiharmonic functions on Riemannian manifolds, Duplicated lecture notes 1968-1970, University of California, Los Angeles.
- [16] L. Sario, M. Nakai, Classification Theory of Riemann Surfaces, Springer-Verlag, 1970, 446 pp. Zbl0199.40603MR41 #8660
- [17] L. Sario, C. Wang, The class of (p, q)-biharmonic functions, Pacific J. Math., 41 (1972), 799-808. Zbl0237.31013MR47 #5780
- [18] L. Sario, C. Wang, Counterexamples in the biharmonic classification of Riemannian 2-manifolds, Pacific J. Math. (to appear). Zbl0252.31011
- [19] L. Sario, C. Wang, Generators of the space of bounded biharmonic functions, Math. Z., 127 (1972), 273-280. Zbl0217.10503MR47 #8888
- [20] L. Sario, C. Wang, Quasiharmonic functions on the Poincaré N-ball, Rend. Mat. (to appear). Zbl0318.31011
- [21] L. Sario, C. Wang, Riemannian manifolds of dimension N ≥ 4 without bounded biharmonic functions, J. London Math. Soc. (to appear). Zbl0276.31007
- [22] L. Sario, C. Wang, Existence of Dirichlet finite biharmonic functions on the Poincaré 3-ball, Pacific J. Math., 48 (1973), 267-274. Zbl0242.31008MR50 #14582
- [23] L. Sario, C. Wang, Negative quasiharmonic functions, Tôhoku Math. J., 26 (1974), 85-93. Zbl0276.31005MR49 #9239
- [24] L. Sario, C. Wang, Radial quasiharmonic functions, Pacific J. Math., 46 (1973), 515-522. Zbl0256.31008MR48 #550
- [25] L. Sario, C. Wang, Parabolicity and existence of bounded biharmonic functions, Comm. Math. Helv. 47, (1972), 341-347. Zbl0247.31012MR50 #2532
- [26] L. Sario, C. Wang, Positive harmonic functions and biharmonic degeneracy, Bull. Amer. Math. Soc., 79 (1973), 182-187. Zbl0252.31010MR46 #9899
- [27] L. Sario, C. Wang, Parabolicity and existence of Dirichlet finite biharmonic functions, J. London Math. Soc. (to appear). Zbl0278.31009
- [28] L. Sario, C. Wang, Harmonic and biharmonic degeneracy, Kodai Math. Sem. Rep., 25 (1973), 392-396. Zbl0272.31005MR48 #12403
- [29] L. Sario, C. Wang, M. Range, Biharmonic projection and decomposition, Ann. Acad. Sci. Fenn. A.I., 494 (1971), 1-14. Zbl0219.31007MR57 #9962
- [30] C. Wang, L. Sario, Polyharmonic classification of Riemannian manifolds, Kyoto Math. J., 12 (1972), 129-140. Zbl0227.31008MR45 #8825
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.