Completeness and existence of bounded biharmonic functions on a riemannian manifold

Leo Sario

Annales de l'institut Fourier (1974)

  • Volume: 24, Issue: 1, page 311-317
  • ISSN: 0373-0956

Abstract

top
A.S. Galbraith has communicated to us the following intriguing problem: does the completeness of a manifold imply, or is it implied by, the emptiness of the class H 2 B of bounded nonharmonic biharmonic functions? Among all manifolds considered thus far in biharmonic classification theory (cf. Bibliography), those that are complete fail to carry H 2 B -functions, and one might suspect that this is always the case. We shall show, however, that there do exist complete manifolds of any dimension that carry H 2 B -functions. Moreover, there exist both complete and incomplete manifolds not permitting these functions, and, trivially, incomplete manifolds possessing them.

How to cite

top

Sario, Leo. "Completeness and existence of bounded biharmonic functions on a riemannian manifold." Annales de l'institut Fourier 24.1 (1974): 311-317. <http://eudml.org/doc/74166>.

@article{Sario1974,
abstract = {A.S. Galbraith has communicated to us the following intriguing problem: does the completeness of a manifold imply, or is it implied by, the emptiness of the class $H^2B$ of bounded nonharmonic biharmonic functions? Among all manifolds considered thus far in biharmonic classification theory (cf. Bibliography), those that are complete fail to carry $H^2B$-functions, and one might suspect that this is always the case. We shall show, however, that there do exist complete manifolds of any dimension that carry $H^2B$-functions. Moreover, there exist both complete and incomplete manifolds not permitting these functions, and, trivially, incomplete manifolds possessing them.},
author = {Sario, Leo},
journal = {Annales de l'institut Fourier},
language = {eng},
number = {1},
pages = {311-317},
publisher = {Association des Annales de l'Institut Fourier},
title = {Completeness and existence of bounded biharmonic functions on a riemannian manifold},
url = {http://eudml.org/doc/74166},
volume = {24},
year = {1974},
}

TY - JOUR
AU - Sario, Leo
TI - Completeness and existence of bounded biharmonic functions on a riemannian manifold
JO - Annales de l'institut Fourier
PY - 1974
PB - Association des Annales de l'Institut Fourier
VL - 24
IS - 1
SP - 311
EP - 317
AB - A.S. Galbraith has communicated to us the following intriguing problem: does the completeness of a manifold imply, or is it implied by, the emptiness of the class $H^2B$ of bounded nonharmonic biharmonic functions? Among all manifolds considered thus far in biharmonic classification theory (cf. Bibliography), those that are complete fail to carry $H^2B$-functions, and one might suspect that this is always the case. We shall show, however, that there do exist complete manifolds of any dimension that carry $H^2B$-functions. Moreover, there exist both complete and incomplete manifolds not permitting these functions, and, trivially, incomplete manifolds possessing them.
LA - eng
UR - http://eudml.org/doc/74166
ER -

References

top
  1. [1] D. Hada, L. Sario, C. Wang, Dirichlet finite biharmonic functions on the Poincaré N-ball, J. Reine Angew. Math. (to appear). Zbl0296.31013
  2. [2] D. Hada, L. Sario, C. Wang, N-manifolds carrying bounded but no Dirichlet finite harmonic functions, Nagoya Math. J. (to appear). Zbl0264.31004
  3. [3] Y.K. Kwon, L. Sario, B. Walsh, Behavior of biharmonic functions on Wiener's and Royden's compactifications, Ann. Inst. Fourier (Grenoble) 21 (1971), 217-226. Zbl0208.13703MR49 #5385
  4. [4] N. Mirsky, L. Sario, C. Wang, Bounded polyharmonic functions and the dimension of the manifold, J. Math. Kyoto Univ., 13 (1973), 529-535. Zbl0284.31007MR50 #2530
  5. [5] M. Nakai, Dirichlet finite biharmonic functions on the plane with distorted metrics, (to appear). Zbl0268.31009
  6. [6] M. Nakai, L. Sario, Completeness and function-theoretic degeneracy of Riemannian spaces, Proc. Nat. Acad. Sci., 57 (1967), 29-31. Zbl0168.08903MR36 #4583
  7. [7] M. Nakai, L. Sario, Biharmonic classification of Riemannian manifolds, Bull. Amer. Math. Soc., 77 (1971), 432-436. Zbl0253.31011MR43 #3965
  8. [8] M. Nakai, L. Sario, Quasiharmonic classification of Riemannian manifolds, Proc. Amer. Math. Soc., 31 (1972), 165-169. Zbl0229.31006MR44 #4692
  9. [9] M. Nakai, L. Sario, Dirichlet finite biharmonic functions with Dirichlet finite Laplacians, Math. Z., 122 (1971), 203-216. Zbl0263.31006MR45 #2616
  10. [10] M. Nakai, L. Sario, A property of biharmonic functions with Dirichlet finite Laplacians, Math. Scand., 29 (1971), 307-316. Zbl0246.31009MR46 #9897
  11. [11] M. Nakai, L. Sario, Existence of Dirichlet finite biharmonic functions, Ann. Acad. Sci. Fenn. A.I, 532 (1973), 1-34. Zbl0264.31008MR54 #13781
  12. [12] M. Nakai, L. Sario, Existence of bounded biharmonic functions, J. Reine Angew. Math. 259 (1973), 147-156. Zbl0251.31003MR47 #9482
  13. [13] M. Nakai, L. Sario, Existence of bounded Dirichlet finite biharmonic functions, Ann. Acad. Sci. Fenn. A.I., 505 (1972), 1-12. Zbl0236.31003MR54 #10596
  14. [14] M. Nakai, L. Sario, Biharmonic functions on Riemannian manifolds, Continuum Mechanics and Related Problems of Analysis, Nauka, Moscow, 1972, 329-335. Zbl0253.31004MR52 #6002
  15. [15] L. Sario, Biharmonic and quasiharmonic functions on Riemannian manifolds, Duplicated lecture notes 1968-1970, University of California, Los Angeles. 
  16. [16] L. Sario, M. Nakai, Classification Theory of Riemann Surfaces, Springer-Verlag, 1970, 446 pp. Zbl0199.40603MR41 #8660
  17. [17] L. Sario, C. Wang, The class of (p, q)-biharmonic functions, Pacific J. Math., 41 (1972), 799-808. Zbl0237.31013MR47 #5780
  18. [18] L. Sario, C. Wang, Counterexamples in the biharmonic classification of Riemannian 2-manifolds, Pacific J. Math. (to appear). Zbl0252.31011
  19. [19] L. Sario, C. Wang, Generators of the space of bounded biharmonic functions, Math. Z., 127 (1972), 273-280. Zbl0217.10503MR47 #8888
  20. [20] L. Sario, C. Wang, Quasiharmonic functions on the Poincaré N-ball, Rend. Mat. (to appear). Zbl0318.31011
  21. [21] L. Sario, C. Wang, Riemannian manifolds of dimension N ≥ 4 without bounded biharmonic functions, J. London Math. Soc. (to appear). Zbl0276.31007
  22. [22] L. Sario, C. Wang, Existence of Dirichlet finite biharmonic functions on the Poincaré 3-ball, Pacific J. Math., 48 (1973), 267-274. Zbl0242.31008MR50 #14582
  23. [23] L. Sario, C. Wang, Negative quasiharmonic functions, Tôhoku Math. J., 26 (1974), 85-93. Zbl0276.31005MR49 #9239
  24. [24] L. Sario, C. Wang, Radial quasiharmonic functions, Pacific J. Math., 46 (1973), 515-522. Zbl0256.31008MR48 #550
  25. [25] L. Sario, C. Wang, Parabolicity and existence of bounded biharmonic functions, Comm. Math. Helv. 47, (1972), 341-347. Zbl0247.31012MR50 #2532
  26. [26] L. Sario, C. Wang, Positive harmonic functions and biharmonic degeneracy, Bull. Amer. Math. Soc., 79 (1973), 182-187. Zbl0252.31010MR46 #9899
  27. [27] L. Sario, C. Wang, Parabolicity and existence of Dirichlet finite biharmonic functions, J. London Math. Soc. (to appear). Zbl0278.31009
  28. [28] L. Sario, C. Wang, Harmonic and biharmonic degeneracy, Kodai Math. Sem. Rep., 25 (1973), 392-396. Zbl0272.31005MR48 #12403
  29. [29] L. Sario, C. Wang, M. Range, Biharmonic projection and decomposition, Ann. Acad. Sci. Fenn. A.I., 494 (1971), 1-14. Zbl0219.31007MR57 #9962
  30. [30] C. Wang, L. Sario, Polyharmonic classification of Riemannian manifolds, Kyoto Math. J., 12 (1972), 129-140. Zbl0227.31008MR45 #8825

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.