Quasiharmonic -functions on riemannian manifolds
Lung Ock Chung, Leo Sario, Cecilia Wang (1975)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Similarity:
Lung Ock Chung, Leo Sario, Cecilia Wang (1975)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Similarity:
Lung Ock Chung, Leo Sario, Cecilia Wang (1973)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Similarity:
Mitsuru Nakai, Leo Sario (1976)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Similarity:
S. Hildebrandt, H. Kaul, K.-O. Widman (1976)
Mathematische Zeitschrift
Similarity:
Atsushi Kasue (2002)
Annales de l’institut Fourier
Similarity:
We study the spectral convergence of compact Riemannian manifolds in relation with the Gromov-Hausdorff distance and discuss the geodesic distances and the energy forms of the limit spaces.
Andrew James Bruce (2020)
Archivum Mathematicum
Similarity:
We define and make an initial study of (even) Riemannian supermanifolds equipped with a homological vector field that is also a Killing vector field. We refer to such supermanifolds as Riemannian Q-manifolds. We show that such Q-manifolds are unimodular, i.e., come equipped with a Q-invariant Berezin volume.
Y. K. Kwon, Leo Sario, Bertram Walsh (1971)
Annales de l'institut Fourier
Similarity:
Let be a smooth Riemannian manifold of finite volume, its Laplace (-Beltrami) operator. Canonical direct-sum decompositions of certain subspaces of the Wiener and Royden algebras of are found, and for biharmonic functions (those for which ) the decompositions are related to the values of the functions and their Laplacians on appropriate ideal boundaries.