# Regularity of irregularities on a brownian path

Annales de l'institut Fourier (1974)

- Volume: 24, Issue: 2, page 195-203
- ISSN: 0373-0956

## Access Full Article

top## Abstract

top## How to cite

topTaylor, Samuel James. "Regularity of irregularities on a brownian path." Annales de l'institut Fourier 24.2 (1974): 195-203. <http://eudml.org/doc/74172>.

@article{Taylor1974,

abstract = {On a standard Brownian motion path there are points where the local behaviour is different from the pattern which occurs at a fixed $t_0$ with probability 1. This paper is a survey of recent results which quantity the extent of the irregularities and show that the exceptional points themselves occur in an extremely regular manner.},

author = {Taylor, Samuel James},

journal = {Annales de l'institut Fourier},

language = {eng},

number = {2},

pages = {195-203},

publisher = {Association des Annales de l'Institut Fourier},

title = {Regularity of irregularities on a brownian path},

url = {http://eudml.org/doc/74172},

volume = {24},

year = {1974},

}

TY - JOUR

AU - Taylor, Samuel James

TI - Regularity of irregularities on a brownian path

JO - Annales de l'institut Fourier

PY - 1974

PB - Association des Annales de l'Institut Fourier

VL - 24

IS - 2

SP - 195

EP - 203

AB - On a standard Brownian motion path there are points where the local behaviour is different from the pattern which occurs at a fixed $t_0$ with probability 1. This paper is a survey of recent results which quantity the extent of the irregularities and show that the exceptional points themselves occur in an extremely regular manner.

LA - eng

UR - http://eudml.org/doc/74172

ER -

## References

top- [1] K. L. CHUNG, P. ERDÖS and T. SIRAO, On the Lipchitz's condition for Brownian motion, J. Math. Soc. Japan, 11 (1959), 263-274. Zbl0091.13301
- [2] Z. CIESIELSKI and S. J. TAYLOR, First passage times and sojourn times for Brownian motion in space, Trans. Amer. Math. Soc., 103 (1962), 434-450. Zbl0121.13003MR26 #816
- [3] A. DVORETZKY, On the oscillation of the Brownian motion process, Israel J. Math., 1 (1963), 212-214. Zbl0211.48303MR29 #1675
- [4] A. DVORETZKY and P. ERDÖS, Some problems on random walk in space, Proc. Second Berkeley Symposium (1951), 353-367. Zbl0044.14001MR13,852b
- [5] C. GOFFMAN and J. J. LOUGHLIN, Strong and weak Φ-variation, Notices Amer. Math. Soc., 19 (1972), 405. Zbl0287.60088MR45 #5288
- [6] J. HAWKES, A lower Lipchitz condition for the stable subordinator, Z fur Wahrscheinlichkeitstheorie, 17 (1971), 23-32. Zbl0193.45002MR43 #8125
- [7] N. JAIN and S. J. TAYLOR, Local asymptotic laws for Brownian motion, Annals of Probability, 1 (1973), 527-549. Zbl0261.60053MR51 #1984
- [8] F. B. KNIGHT, Existence of small oscillations at zeros of Brownian motion. Zbl0305.60035
- [9] P. LÉVY, Théorie de l'addition des variables aléatoires. Paris, 1937. Zbl0016.17003JFM63.0490.04
- [10] P. LÉVY, Le mouvement brownien plan, Amer. J. Math., 62 (1940), 487-550. Zbl0024.13906MR2,107gJFM66.0619.02
- [11] S. OREY and S. J. TAYLOR, How often on a Brownian path does the law of iterated logarithm fail ? Proc. Lon. Math. Soc., 28 (3), (1974). Zbl0292.60128MR50 #11486
- [12] F. SPITZER, Some theorems concerning two-dimensional Brownian motion, Trans. Amer. Math. Soc., 87 (1958), 187-197. Zbl0089.13601MR21 #3051
- [13] S. J. TAYLOR, Exact asymptotic estimates of Brownian path variation, Duke Jour., 39 (1972), 219-241. Zbl0241.60069MR45 #4500

## Citations in EuDML Documents

top## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.