Covering problems and exceptional points for random walk and brownian motion
Séminaire Bourbaki (2004-2005)
- Volume: 47, page 469-480
- ISSN: 0303-1179
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] D. Aldous – Probability approximations via the Poisson clumping heuristic, Applied Mathematical Sciences, vol. 77, Springer-Verlag, New York, 1989. Zbl0679.60013MR969362
- [2] Z. Ciesielski & S. J. Taylor – “First passage times and sojourn times for Brownian motion in space and the exact Hausdorff measure of the sample path”, Trans. Amer. Math. Soc.103 (1962), p. 434–450. Zbl0121.13003MR143257
- [3] O. Daviaud – “ Extremes of the discrete two-dimensional Gaussian free field”, Ann. Probab. 34 (2006), no. 3, p. 962–986. Zbl1104.60062MR2243875
- [4] A. Dembo – “Favorite points, cover times and fractals”, in Lectures on probability theory and statistics, Lecture Notes in Math., vol. 1869, Springer, Berlin, 2005, p. 1–101. Zbl1102.60009MR2228383
- [5] A. Dembo, Y. Peres & J. Rosen – “How large a disc is covered by a random walk in steps ?”, prépublication. Zbl1123.60026
- [6] —, “Brownian motion on compact manifolds : cover time and late points”, Electron. J. Probab. 8 (2003), no. 15, 14 pp. (electronic). Zbl1063.58021MR1998762
- [7] A. Dembo, Y. Peres, J. Rosen & O. Zeitouni – “Late points for random walks in two dimensions”, Ann. Probab. 34 (2006), no. 1, p. 219–263. Zbl1100.60057MR2206347
- [8] —, “Thick points for transient symmetric stable processes”, Electron. J. Probab. 4 (1999), no. 10, 13 pp. (electronic). Zbl0927.60077MR1690314
- [9] —, “Thick points for spatial Brownian motion : multifractal analysis of occupation measure”, Ann. Probab. 28 (2000), no. 1, p. 1–35. Zbl1130.60311MR1755996
- [10] —, “Thin points for Brownian motion”, Ann. Inst. H. Poincaré Probab. Statist. 36 (2000), no. 6, p. 749–774. Zbl0977.60073MR1797392
- [11] —, “Thick points for planar Brownian motion and the Erdős-Taylor conjecture on random walk”, Acta Math. 186 (2001), no. 2, p. 239–270. Zbl1008.60063MR1846031
- [12] —, “Thick points for intersections of planar sample paths”, Trans. Amer. Math. Soc. 354 (2002), no. 12, p. 4969–5003. Zbl1007.60077MR1926845
- [13] —, “Cover times for Brownian motion and random walks in two dimensions”, Ann. of Math. (2) 160 (2004), no. 2, p. 433–464. Zbl1068.60018MR2123929
- [14] U. Einmahl – “Extensions of results of Komlós, Major, and Tusnády to the multivariate case”, J. Multivariate Anal. 28 (1989), no. 1, p. 20–68. Zbl0676.60038MR996984
- [15] P. Erdős & P. Révész – “On the favourite points of a random walk”, in Mathematical structure– computational mathematics – mathematical modelling, 2, Publ. House Bulgar. Acad. Sci., Sofia, 1984, p. 152–157. Zbl0593.60072MR790875
- [16] —, “Three problems on the random walk in ”, Studia Sci. Math. Hungar.26 (1991), p. 309–320. Zbl0774.60036MR1180496
- [17] P. Erdős & S. J. Taylor – “Some problems on the structure of random walk paths”, Acta Math. Sci. Hungar.11 (1960), p. 137–162. Zbl0091.13303MR121870
- [18] J. Komlós, P. Major & G. Tusnády – “An approximation of partial sums of independent RV’s, and the sample DF. II”, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 34 (1976), no. 1, p. 33–58. Zbl0307.60045MR402883
- [19] G. F. Lawler – “On the covering time of a disc by simple random walk in two dimensions”, in Seminar on Stochastic Processes, 1992 (Seattle, WA, 1992), Progr. Probab., vol. 33, Birkhäuser Boston, Boston, MA, 1993, p. 189–207. Zbl0789.60019MR1278083
- [20] J.-F. Le Gall – “Some properties of planar Brownian motion”, in École d’Été de Probabilités de Saint-Flour XX—1990, Lecture Notes in Math., vol. 1527, Springer, Berlin, 1992, p. 111–235. Zbl0779.60068MR1229519
- [21] E. A. Perkins & S. J. Taylor – “Uniform measure results for the image of subsets under Brownian motion”, Probab. Theory Related Fields 76 (1987), no. 3, p. 257–289. Zbl0613.60071MR912654
- [22] D. Ray – “Sojourn times and the exact Hausdorff measure of the sample path for planar Brownian motion”, Trans. Amer. Math. Soc.106 (1963), p. 436–444. Zbl0119.14602MR145599
- [23] P. Révész – “Clusters of a random walk on the plane”, Ann. Probab. 21 (1993), no. 1, p. 318–328. Zbl0770.60034MR1207228
- [24] —, “Covering problems”, Theory Probab. Appl.38 (1993), p. 367–379. Zbl0807.60068MR1317989
- [25] —, Random walk in random and non-random environments, second ’ed., World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2005. Zbl1090.60001MR2168855
- [26] J. Rosen – “A random walk proof of the Erdős-Taylor conjecture”, Period. Math. Hungar. 50 (2005), no. 1-2, p. 223–245. Zbl1098.60045MR2162811
- [27] S. J. Taylor – “Regularity of irregularities on a Brownian path”, Ann. Inst. Fourier24 (1974), p. 195–203. Zbl0262.60059MR410959
- [28] B. Tóth – “No more than three favorite sites for simple random walk”, Ann. Probab. 29 (2001), no. 1, p. 484–503. Zbl1031.60036MR1825161
- [29] W. Werner – “Random planar curves and Schramm-Loewner evolutions”, in Lectures on probability theory and statistics, Lecture Notes in Math., vol. 1840, Springer, Berlin, 2004, p. 107–195. Zbl1057.60078MR2079672