Covering problems and exceptional points for random walk and brownian motion

Zhan Shi

Séminaire Bourbaki (2004-2005)

  • Volume: 47, page 469-480
  • ISSN: 0303-1179

Abstract

top
Random walk is a fundamental object in probability theory. One of the most interesting problems for random walk (as well as for brownian motion, its continuous-time analogue) is to know how it covers various sets, where the frequently/rarely visited points lie, and whether there are many such points. Dembo, Peres, Rosen and Zeitouni solve several important open problems related to these questions.

How to cite

top

Shi, Zhan. "Problèmes de recouvrement et points exceptionnels pour la marche aléatoire et le mouvement brownien." Séminaire Bourbaki 47 (2004-2005): 469-480. <http://eudml.org/doc/252175>.

@article{Shi2004-2005,
abstract = {La marche aléatoire (ou marche au hasard) est un objet fondamental de la théorie des probabilités. Un des problèmes les plus intéressants pour la marche aléatoire (ainsi que pour le mouvement brownien, son analogue dans un contexte continu) est de savoir comment elle recouvre des ensembles où se trouvent les points qui sont souvent (ou au contraire, rarement) visités, et combien il y a de tels points. Les travaux de Dembo, Peres, Rosen et Zeitouni permettent de résoudre plusieurs conjectures importantes liées à ces questions.},
author = {Shi, Zhan},
journal = {Séminaire Bourbaki},
keywords = {covering problem; favourite point; thick point; thin point; late point; multifractal analysis; occupation measure; tree; random walk; brownian motion},
language = {fre},
pages = {469-480},
publisher = {Association des amis de Nicolas Bourbaki, Société mathématique de France},
title = {Problèmes de recouvrement et points exceptionnels pour la marche aléatoire et le mouvement brownien},
url = {http://eudml.org/doc/252175},
volume = {47},
year = {2004-2005},
}

TY - JOUR
AU - Shi, Zhan
TI - Problèmes de recouvrement et points exceptionnels pour la marche aléatoire et le mouvement brownien
JO - Séminaire Bourbaki
PY - 2004-2005
PB - Association des amis de Nicolas Bourbaki, Société mathématique de France
VL - 47
SP - 469
EP - 480
AB - La marche aléatoire (ou marche au hasard) est un objet fondamental de la théorie des probabilités. Un des problèmes les plus intéressants pour la marche aléatoire (ainsi que pour le mouvement brownien, son analogue dans un contexte continu) est de savoir comment elle recouvre des ensembles où se trouvent les points qui sont souvent (ou au contraire, rarement) visités, et combien il y a de tels points. Les travaux de Dembo, Peres, Rosen et Zeitouni permettent de résoudre plusieurs conjectures importantes liées à ces questions.
LA - fre
KW - covering problem; favourite point; thick point; thin point; late point; multifractal analysis; occupation measure; tree; random walk; brownian motion
UR - http://eudml.org/doc/252175
ER -

References

top
  1. [1] D. Aldous – Probability approximations via the Poisson clumping heuristic, Applied Mathematical Sciences, vol. 77, Springer-Verlag, New York, 1989. Zbl0679.60013MR969362
  2. [2] Z. Ciesielski & S. J. Taylor – “First passage times and sojourn times for Brownian motion in space and the exact Hausdorff measure of the sample path”, Trans. Amer. Math. Soc.103 (1962), p. 434–450. Zbl0121.13003MR143257
  3. [3] O. Daviaud – “ Extremes of the discrete two-dimensional Gaussian free field”, Ann. Probab. 34 (2006), no. 3, p. 962–986. Zbl1104.60062MR2243875
  4. [4] A. Dembo – “Favorite points, cover times and fractals”, in Lectures on probability theory and statistics, Lecture Notes in Math., vol. 1869, Springer, Berlin, 2005, p. 1–101. Zbl1102.60009MR2228383
  5. [5] A. Dembo, Y. Peres & J. Rosen – “How large a disc is covered by a random walk in n steps ?”, prépublication. Zbl1123.60026
  6. [6] —, “Brownian motion on compact manifolds : cover time and late points”, Electron. J. Probab. 8 (2003), no. 15, 14 pp. (electronic). Zbl1063.58021MR1998762
  7. [7] A. Dembo, Y. Peres, J. Rosen & O. Zeitouni – “Late points for random walks in two dimensions”, Ann. Probab. 34 (2006), no. 1, p. 219–263. Zbl1100.60057MR2206347
  8. [8] —, “Thick points for transient symmetric stable processes”, Electron. J. Probab. 4 (1999), no. 10, 13 pp. (electronic). Zbl0927.60077MR1690314
  9. [9] —, “Thick points for spatial Brownian motion : multifractal analysis of occupation measure”, Ann. Probab. 28 (2000), no. 1, p. 1–35. Zbl1130.60311MR1755996
  10. [10] —, “Thin points for Brownian motion”, Ann. Inst. H. Poincaré Probab. Statist. 36 (2000), no. 6, p. 749–774. Zbl0977.60073MR1797392
  11. [11] —, “Thick points for planar Brownian motion and the Erdős-Taylor conjecture on random walk”, Acta Math. 186 (2001), no. 2, p. 239–270. Zbl1008.60063MR1846031
  12. [12] —, “Thick points for intersections of planar sample paths”, Trans. Amer. Math. Soc. 354 (2002), no. 12, p. 4969–5003. Zbl1007.60077MR1926845
  13. [13] —, “Cover times for Brownian motion and random walks in two dimensions”, Ann. of Math. (2) 160 (2004), no. 2, p. 433–464. Zbl1068.60018MR2123929
  14. [14] U. Einmahl – “Extensions of results of Komlós, Major, and Tusnády to the multivariate case”, J. Multivariate Anal. 28 (1989), no. 1, p. 20–68. Zbl0676.60038MR996984
  15. [15] P. Erdős & P. Révész – “On the favourite points of a random walk”, in Mathematical structure– computational mathematics – mathematical modelling, 2, Publ. House Bulgar. Acad. Sci., Sofia, 1984, p. 152–157. Zbl0593.60072MR790875
  16. [16] —, “Three problems on the random walk in Z d ”, Studia Sci. Math. Hungar.26 (1991), p. 309–320. Zbl0774.60036MR1180496
  17. [17] P. Erdős & S. J. Taylor – “Some problems on the structure of random walk paths”, Acta Math. Sci. Hungar.11 (1960), p. 137–162. Zbl0091.13303MR121870
  18. [18] J. Komlós, P. Major & G. Tusnády – “An approximation of partial sums of independent RV’s, and the sample DF. II”, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 34 (1976), no. 1, p. 33–58. Zbl0307.60045MR402883
  19. [19] G. F. Lawler – “On the covering time of a disc by simple random walk in two dimensions”, in Seminar on Stochastic Processes, 1992 (Seattle, WA, 1992), Progr. Probab., vol. 33, Birkhäuser Boston, Boston, MA, 1993, p. 189–207. Zbl0789.60019MR1278083
  20. [20] J.-F. Le Gall – “Some properties of planar Brownian motion”, in École d’Été de Probabilités de Saint-Flour XX—1990, Lecture Notes in Math., vol. 1527, Springer, Berlin, 1992, p. 111–235. Zbl0779.60068MR1229519
  21. [21] E. A. Perkins & S. J. Taylor – “Uniform measure results for the image of subsets under Brownian motion”, Probab. Theory Related Fields 76 (1987), no. 3, p. 257–289. Zbl0613.60071MR912654
  22. [22] D. Ray – “Sojourn times and the exact Hausdorff measure of the sample path for planar Brownian motion”, Trans. Amer. Math. Soc.106 (1963), p. 436–444. Zbl0119.14602MR145599
  23. [23] P. Révész – “Clusters of a random walk on the plane”, Ann. Probab. 21 (1993), no. 1, p. 318–328. Zbl0770.60034MR1207228
  24. [24] —, “Covering problems”, Theory Probab. Appl.38 (1993), p. 367–379. Zbl0807.60068MR1317989
  25. [25] —, Random walk in random and non-random environments, second ’ed., World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2005. Zbl1090.60001MR2168855
  26. [26] J. Rosen – “A random walk proof of the Erdős-Taylor conjecture”, Period. Math. Hungar. 50 (2005), no. 1-2, p. 223–245. Zbl1098.60045MR2162811
  27. [27] S. J. Taylor – “Regularity of irregularities on a Brownian path”, Ann. Inst. Fourier24 (1974), p. 195–203. Zbl0262.60059MR410959
  28. [28] B. Tóth – “No more than three favorite sites for simple random walk”, Ann. Probab. 29 (2001), no. 1, p. 484–503. Zbl1031.60036MR1825161
  29. [29] W. Werner – “Random planar curves and Schramm-Loewner evolutions”, in Lectures on probability theory and statistics, Lecture Notes in Math., vol. 1840, Springer, Berlin, 2004, p. 107–195. Zbl1057.60078MR2079672

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.