Covering problems and exceptional points for random walk and brownian motion
Séminaire Bourbaki (2004-2005)
- Volume: 47, page 469-480
- ISSN: 0303-1179
Access Full Article
topAbstract
topHow to cite
topShi, Zhan. "Problèmes de recouvrement et points exceptionnels pour la marche aléatoire et le mouvement brownien." Séminaire Bourbaki 47 (2004-2005): 469-480. <http://eudml.org/doc/252175>.
@article{Shi2004-2005,
abstract = {La marche aléatoire (ou marche au hasard) est un objet fondamental de la théorie des probabilités. Un des problèmes les plus intéressants pour la marche aléatoire (ainsi que pour le mouvement brownien, son analogue dans un contexte continu) est de savoir comment elle recouvre des ensembles où se trouvent les points qui sont souvent (ou au contraire, rarement) visités, et combien il y a de tels points. Les travaux de Dembo, Peres, Rosen et Zeitouni permettent de résoudre plusieurs conjectures importantes liées à ces questions.},
author = {Shi, Zhan},
journal = {Séminaire Bourbaki},
keywords = {covering problem; favourite point; thick point; thin point; late point; multifractal analysis; occupation measure; tree; random walk; brownian motion},
language = {fre},
pages = {469-480},
publisher = {Association des amis de Nicolas Bourbaki, Société mathématique de France},
title = {Problèmes de recouvrement et points exceptionnels pour la marche aléatoire et le mouvement brownien},
url = {http://eudml.org/doc/252175},
volume = {47},
year = {2004-2005},
}
TY - JOUR
AU - Shi, Zhan
TI - Problèmes de recouvrement et points exceptionnels pour la marche aléatoire et le mouvement brownien
JO - Séminaire Bourbaki
PY - 2004-2005
PB - Association des amis de Nicolas Bourbaki, Société mathématique de France
VL - 47
SP - 469
EP - 480
AB - La marche aléatoire (ou marche au hasard) est un objet fondamental de la théorie des probabilités. Un des problèmes les plus intéressants pour la marche aléatoire (ainsi que pour le mouvement brownien, son analogue dans un contexte continu) est de savoir comment elle recouvre des ensembles où se trouvent les points qui sont souvent (ou au contraire, rarement) visités, et combien il y a de tels points. Les travaux de Dembo, Peres, Rosen et Zeitouni permettent de résoudre plusieurs conjectures importantes liées à ces questions.
LA - fre
KW - covering problem; favourite point; thick point; thin point; late point; multifractal analysis; occupation measure; tree; random walk; brownian motion
UR - http://eudml.org/doc/252175
ER -
References
top- [1] D. Aldous – Probability approximations via the Poisson clumping heuristic, Applied Mathematical Sciences, vol. 77, Springer-Verlag, New York, 1989. Zbl0679.60013MR969362
- [2] Z. Ciesielski & S. J. Taylor – “First passage times and sojourn times for Brownian motion in space and the exact Hausdorff measure of the sample path”, Trans. Amer. Math. Soc.103 (1962), p. 434–450. Zbl0121.13003MR143257
- [3] O. Daviaud – “ Extremes of the discrete two-dimensional Gaussian free field”, Ann. Probab. 34 (2006), no. 3, p. 962–986. Zbl1104.60062MR2243875
- [4] A. Dembo – “Favorite points, cover times and fractals”, in Lectures on probability theory and statistics, Lecture Notes in Math., vol. 1869, Springer, Berlin, 2005, p. 1–101. Zbl1102.60009MR2228383
- [5] A. Dembo, Y. Peres & J. Rosen – “How large a disc is covered by a random walk in steps ?”, prépublication. Zbl1123.60026
- [6] —, “Brownian motion on compact manifolds : cover time and late points”, Electron. J. Probab. 8 (2003), no. 15, 14 pp. (electronic). Zbl1063.58021MR1998762
- [7] A. Dembo, Y. Peres, J. Rosen & O. Zeitouni – “Late points for random walks in two dimensions”, Ann. Probab. 34 (2006), no. 1, p. 219–263. Zbl1100.60057MR2206347
- [8] —, “Thick points for transient symmetric stable processes”, Electron. J. Probab. 4 (1999), no. 10, 13 pp. (electronic). Zbl0927.60077MR1690314
- [9] —, “Thick points for spatial Brownian motion : multifractal analysis of occupation measure”, Ann. Probab. 28 (2000), no. 1, p. 1–35. Zbl1130.60311MR1755996
- [10] —, “Thin points for Brownian motion”, Ann. Inst. H. Poincaré Probab. Statist. 36 (2000), no. 6, p. 749–774. Zbl0977.60073MR1797392
- [11] —, “Thick points for planar Brownian motion and the Erdős-Taylor conjecture on random walk”, Acta Math. 186 (2001), no. 2, p. 239–270. Zbl1008.60063MR1846031
- [12] —, “Thick points for intersections of planar sample paths”, Trans. Amer. Math. Soc. 354 (2002), no. 12, p. 4969–5003. Zbl1007.60077MR1926845
- [13] —, “Cover times for Brownian motion and random walks in two dimensions”, Ann. of Math. (2) 160 (2004), no. 2, p. 433–464. Zbl1068.60018MR2123929
- [14] U. Einmahl – “Extensions of results of Komlós, Major, and Tusnády to the multivariate case”, J. Multivariate Anal. 28 (1989), no. 1, p. 20–68. Zbl0676.60038MR996984
- [15] P. Erdős & P. Révész – “On the favourite points of a random walk”, in Mathematical structure– computational mathematics – mathematical modelling, 2, Publ. House Bulgar. Acad. Sci., Sofia, 1984, p. 152–157. Zbl0593.60072MR790875
- [16] —, “Three problems on the random walk in ”, Studia Sci. Math. Hungar.26 (1991), p. 309–320. Zbl0774.60036MR1180496
- [17] P. Erdős & S. J. Taylor – “Some problems on the structure of random walk paths”, Acta Math. Sci. Hungar.11 (1960), p. 137–162. Zbl0091.13303MR121870
- [18] J. Komlós, P. Major & G. Tusnády – “An approximation of partial sums of independent RV’s, and the sample DF. II”, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 34 (1976), no. 1, p. 33–58. Zbl0307.60045MR402883
- [19] G. F. Lawler – “On the covering time of a disc by simple random walk in two dimensions”, in Seminar on Stochastic Processes, 1992 (Seattle, WA, 1992), Progr. Probab., vol. 33, Birkhäuser Boston, Boston, MA, 1993, p. 189–207. Zbl0789.60019MR1278083
- [20] J.-F. Le Gall – “Some properties of planar Brownian motion”, in École d’Été de Probabilités de Saint-Flour XX—1990, Lecture Notes in Math., vol. 1527, Springer, Berlin, 1992, p. 111–235. Zbl0779.60068MR1229519
- [21] E. A. Perkins & S. J. Taylor – “Uniform measure results for the image of subsets under Brownian motion”, Probab. Theory Related Fields 76 (1987), no. 3, p. 257–289. Zbl0613.60071MR912654
- [22] D. Ray – “Sojourn times and the exact Hausdorff measure of the sample path for planar Brownian motion”, Trans. Amer. Math. Soc.106 (1963), p. 436–444. Zbl0119.14602MR145599
- [23] P. Révész – “Clusters of a random walk on the plane”, Ann. Probab. 21 (1993), no. 1, p. 318–328. Zbl0770.60034MR1207228
- [24] —, “Covering problems”, Theory Probab. Appl.38 (1993), p. 367–379. Zbl0807.60068MR1317989
- [25] —, Random walk in random and non-random environments, second ’ed., World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2005. Zbl1090.60001MR2168855
- [26] J. Rosen – “A random walk proof of the Erdős-Taylor conjecture”, Period. Math. Hungar. 50 (2005), no. 1-2, p. 223–245. Zbl1098.60045MR2162811
- [27] S. J. Taylor – “Regularity of irregularities on a Brownian path”, Ann. Inst. Fourier24 (1974), p. 195–203. Zbl0262.60059MR410959
- [28] B. Tóth – “No more than three favorite sites for simple random walk”, Ann. Probab. 29 (2001), no. 1, p. 484–503. Zbl1031.60036MR1825161
- [29] W. Werner – “Random planar curves and Schramm-Loewner evolutions”, in Lectures on probability theory and statistics, Lecture Notes in Math., vol. 1840, Springer, Berlin, 2004, p. 107–195. Zbl1057.60078MR2079672
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.