Metric entropy and the central limit theorem in C ( S )

R. M. Dudley

Annales de l'institut Fourier (1974)

  • Volume: 24, Issue: 2, page 49-60
  • ISSN: 0373-0956

Abstract

top
Central limit theorems with hypotheses in terms of ϵ -entropy are proved first in C ( S ) where S is a compact metric space and then in an arbitrary separable Banach space.

How to cite

top

Dudley, R. M.. "Metric entropy and the central limit theorem in $C(S)$." Annales de l'institut Fourier 24.2 (1974): 49-60. <http://eudml.org/doc/74176>.

@article{Dudley1974,
abstract = {Central limit theorems with hypotheses in terms of $\varepsilon $-entropy are proved first in $C(S)$ where $S$ is a compact metric space and then in an arbitrary separable Banach space.},
author = {Dudley, R. M.},
journal = {Annales de l'institut Fourier},
language = {eng},
number = {2},
pages = {49-60},
publisher = {Association des Annales de l'Institut Fourier},
title = {Metric entropy and the central limit theorem in $C(S)$},
url = {http://eudml.org/doc/74176},
volume = {24},
year = {1974},
}

TY - JOUR
AU - Dudley, R. M.
TI - Metric entropy and the central limit theorem in $C(S)$
JO - Annales de l'institut Fourier
PY - 1974
PB - Association des Annales de l'Institut Fourier
VL - 24
IS - 2
SP - 49
EP - 60
AB - Central limit theorems with hypotheses in terms of $\varepsilon $-entropy are proved first in $C(S)$ where $S$ is a compact metric space and then in an arbitrary separable Banach space.
LA - eng
UR - http://eudml.org/doc/74176
ER -

References

top
  1. Aloisio de ARAUJO, On the central limit theorem for C(Ik) valued random variables (preprint, Statistics Dept., Univ. of Calif., Berkeley), 1973. 
  2. G. BENNETT, Probability inequalities for the sum of independent random variables, Jour. Amer. Statist. Assoc., 57 (1962), 33-45. Zbl0104.11905
  3. R. M. DUDLEY, Sample functions of the Gaussian process, Ann. Probability, 1 (1973), 66-103. Zbl0261.60033MR49 #11605
  4. R. FORTET and E. MOURIER, Les fonctions aléatoires comme éléments aléatoires dans les espaces de Banach, Studia Math., 15 (1955), 62-79. Zbl0068.11104MR19,1202b
  5. Evarist GINÉ, On the central limit theorem for sample continuous processes, to appear in Annals of Probability, 1974. Zbl0288.60017
  6. Evarist GINÉ, A note on the central limit theorem in C(S), (preprint), 1973. 
  7. M. LOÈVE, (1963), Probability Theory (Princeton, Van Nostrand). Zbl0108.14202MR34 #3596
  8. V. STRASSEN and R. DUDLEY, (1969), The central limit theorem and ε-en-tropy, Lecture Notes in Math., 89, 224-231. Zbl0196.21101MR43 #5593

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.