Uniform exponential bound for the normalized empirical process
J. Yukich (1986)
Studia Mathematica
Similarity:
J. Yukich (1986)
Studia Mathematica
Similarity:
Fumio Hiai, Dénes Petz (2000)
Annales de l'I.H.P. Probabilités et statistiques
Similarity:
José Trashorras (2002)
Annales de l'I.H.P. Probabilités et statistiques
Similarity:
Paul-Marie Samson (2007)
Annales de l'I.H.P. Probabilités et statistiques
Similarity:
Takahiko Nakazi (1984)
Studia Mathematica
Similarity:
D. Edmunds, Yu. Netrusov (1998)
Studia Mathematica
Similarity:
Let id be the natural embedding of the Sobolev space in the Zygmund space , where , 1 < p < ∞, l ∈ ℕ, 1/p = 1/q + l/n and a < 0, a ≠ -l/n. We consider the entropy numbers of this embedding and show that , where η = min(-a,l/n). Extensions to more general spaces are given. The results are applied to give information about the behaviour of the eigenvalues of certain operators of elliptic type.
Firas Rassoul-Agha, Timo Seppäläinen (2011)
Annales de l'I.H.P. Probabilités et statistiques
Similarity:
We consider a bounded step size random walk in an ergodic random environment with some ellipticity, on an integer lattice of arbitrary dimension. We prove a level 3 large deviation principle, under almost every environment, with rate function related to a relative entropy.