Displaying similar documents to “Metric entropy and the central limit theorem in C ( S )

Entropy numbers of embeddings of Sobolev spaces in Zygmund spaces

D. Edmunds, Yu. Netrusov (1998)

Studia Mathematica

Similarity:

Let id be the natural embedding of the Sobolev space W p l ( Ω ) in the Zygmund space L q ( l o g L ) a ( Ω ) , where Ω = ( 0 , 1 ) n , 1 < p < ∞, l ∈ ℕ, 1/p = 1/q + l/n and a < 0, a ≠ -l/n. We consider the entropy numbers e k ( i d ) of this embedding and show that e k ( i d ) k - η , where η = min(-a,l/n). Extensions to more general spaces are given. The results are applied to give information about the behaviour of the eigenvalues of certain operators of elliptic type.

Process-level quenched large deviations for random walk in random environment

Firas Rassoul-Agha, Timo Seppäläinen (2011)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

We consider a bounded step size random walk in an ergodic random environment with some ellipticity, on an integer lattice of arbitrary dimension. We prove a level 3 large deviation principle, under almost every environment, with rate function related to a relative entropy.