Space of Baire functions. I
Annales de l'institut Fourier (1974)
- Volume: 24, Issue: 4, page 47-76
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topJayne, J. E.. "Space of Baire functions. I." Annales de l'institut Fourier 24.4 (1974): 47-76. <http://eudml.org/doc/74203>.
@article{Jayne1974,
abstract = {Several equivalent conditions are given for the existence of real-valued Baire functions of all classes on a type of $\{\bf K\}$-analytic spaces, called disjoint analytic spaces, and on all pseudocompact spaces. The sequential stability index for the Banach space of bounded continuous real-valued functions on these spaces is shown to be either $0,1$, or $\Omega $ (the first uncountable ordinal). In contrast, the space of bounded real-valued Baire functions of class 1 is shown to contain closed linear subspaces with index $\alpha $ for each countable ordinal $\alpha $. The sequential stability index for linear subspaces of continuous real-valued functions on a compact space is shown to be invariant under isomorphic embeddings in the space of continuous real-valued functions on any compact space.},
author = {Jayne, J. E.},
journal = {Annales de l'institut Fourier},
language = {eng},
number = {4},
pages = {47-76},
publisher = {Association des Annales de l'Institut Fourier},
title = {Space of Baire functions. I},
url = {http://eudml.org/doc/74203},
volume = {24},
year = {1974},
}
TY - JOUR
AU - Jayne, J. E.
TI - Space of Baire functions. I
JO - Annales de l'institut Fourier
PY - 1974
PB - Association des Annales de l'Institut Fourier
VL - 24
IS - 4
SP - 47
EP - 76
AB - Several equivalent conditions are given for the existence of real-valued Baire functions of all classes on a type of ${\bf K}$-analytic spaces, called disjoint analytic spaces, and on all pseudocompact spaces. The sequential stability index for the Banach space of bounded continuous real-valued functions on these spaces is shown to be either $0,1$, or $\Omega $ (the first uncountable ordinal). In contrast, the space of bounded real-valued Baire functions of class 1 is shown to contain closed linear subspaces with index $\alpha $ for each countable ordinal $\alpha $. The sequential stability index for linear subspaces of continuous real-valued functions on a compact space is shown to be invariant under isomorphic embeddings in the space of continuous real-valued functions on any compact space.
LA - eng
UR - http://eudml.org/doc/74203
ER -
References
top- [1] P. S. ALEXANDROFF et P. S. URYSOHN, Mémoire sur les espaces topologiques compacts, Verh. Akad. Wetensch., Amsterdam, 14 (1929), 1-96. Zbl55.0960.02JFM55.0960.02
- [2] J. M. ANDERSON and J. E. JAYNE, The sequential stability index of a function space, Mathematika, 20 (1973), 210-213. Zbl0334.46027MR49 #11240
- [3] A. V. ARHANGEL'SKII, On the cardinality of first countable compacta, Soviet Math. Dokl., 10 (1969), 951-955.
- [4] M. BRELOT, On topologies and Boundaries in Potential Theory, Lecture Notes in Mathematics No 175, Springer-Verlag, Berlin (1971). Zbl0222.31014MR43 #7654
- [5] A. V. ČERNAVSKIǏ, Remarks on a theorem of Schneider on the existence in perfectly normal bicompacta of an A-set which is not a B-set, Vestnik Moskov. Univ. Ser. I Mat. Meh., 2 (1962), 20.
- [6] M. M. CHOBAN, Baire sets in complete topological spaces, Ukrain Mat. Z., 22 (1970), 330-342.
- [7] G. CHOQUET, Ensembles boréliens et analytiques dans les espaces topologiques, C. R. Acad. Sci. Paris, 232 (1951), 2174-2176. Zbl0042.05403MR13,19e
- [8] G. CHOQUET, Ensembles K-analytiques et K-Sousliniens. Cas général et cas métrique, Ann. Inst. Fourier, Grenoble, 9 (1959), 75-81. Zbl0094.03403MR22 #3692a
- [9] Z. FROLÍK, A contribution to the descriptive theory of sets. General Topology and its Relations to Modern Analysis and Algebra I., Proc. Prague Symp., Academic Press, (1962). Zbl0116.14202
- [10] Z. FROLÍK, A survey of separable descriptive theory of sets and spaces, Czech. Math. J., 20 (95), (1970), 406-467. Zbl0223.54028MR42 #1660
- [11] L. GILLMAN et M. JERISON, Rings of Continuous Functions. Van Nostrand Co., Princeton, (1960). Zbl0093.30001MR22 #6994
- [12] F. HAUSDORFF, Set Theory, Chelsea, New York, (1957). Zbl0081.04601MR19,111a
- [13] R. HAYDON, Trois exemples dans la théorie des espaces de fonctions continues, C. R. Acad. Sci. Paris, A 276 (1973), 685-687. Zbl0246.46011MR48 #4675
- [14] J. E. JAYNE, Descriptive set theory in compact spaces, Notices Amer. Math. Soc., 17 (1970), 268.
- [15] J. E. JAYNE, Spaces of Baire functions, Baire classes, and Suslin sets. Doctoral dissertation, Columbia University, New York, (1971).
- [16] J. E. JAYNE, Topological representations of measurable spaces. General Topology and its Relations to Modern Analysis and Algebra III, Proc. Prague Symp., Academic Press, (1972). Zbl0313.54045
- [17] J. E. JAYNE, Characterizations and metrization of proper analytic spaces, Inventiones Mathematicae, 22 (1973), 51-62. Zbl0267.54036MR48 #9687
- [18] K. KURATOWSKI, Topology, Vol. I, Academic Press, New York, (1966). Zbl0158.40802MR36 #840
- [19] H. LEBESGUE, Sur les fonctions représentables analytiquement, J. Math. Pures Appl., 1 (1905), 139-216. Zbl36.0453.02JFM36.0453.02
- [20] E. R. LORCH, L'intégration dans les espaces généraux, Bull. Soc. Math. France, 88 (1960), 469-497. Zbl0094.09103MR23 #A2502
- [21] E. R. LORCH, Compactification, Baire functions, and Daniell integration, Acta Sci. Math. (Szeged), 24 (1963), 204-218. Zbl0117.09303MR29 #584
- [22] P. R. MEYER, The Baire order problem for compact spaces, Duke Math. J., 33 (1966), 33-40. Zbl0138.17602MR32 #8307
- [23] P. R. MEYER, Function spaces and the Aleksandrov-Urysohn conjecture, Ann. Mat. Pura Appl., 86 (1970), 25-29.
- [24] A. PELCZYŃSKI et Z. SEMADENI, Spaces of continuous functions III, [The space C(X) for X without perfect subsets], Studia Math., 18 (1959), 211-222. Zbl0091.27803MR21 #6528
- [25] V. I. PONOMAREV, Borel sets in perfectly normal bicompacta, Soviet Math. Dokl., 7 (1966), 1236-1239. Zbl0169.54201MR34 #3527
- [26] C. A. ROGERS, Descriptive Borel sets, Proc. Roy. Soc., A 286 (1965), 455-478. Zbl0158.20202MR32 #2536
- [28] W. RUDIN, Continuous functions on compact spaces without perfect subsets, Proc. Amer. Math. Soc., 8 (1957), 39-42. Zbl0077.31103MR19,46b
- [29] D. SARASON, A remark on the weak-star topology of l∞, Studia Math., 30 (1968), 355-359. Zbl0159.18001MR38 #2581
- [30] W. SIERPIŃSKI, Hypothèse du Continu, Monografje Matematyczne, Warsaw, 4 (1934). Zbl0009.30201JFM60.0035.01
- [31] A. D. TAǏMANOV, On closed mappings II, Mat. Sb. (N.S.), 52 (94), 579-588, (1960). Zbl0127.38704MR22 #9957
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.