Space of Baire functions. I

J. E. Jayne

Annales de l'institut Fourier (1974)

  • Volume: 24, Issue: 4, page 47-76
  • ISSN: 0373-0956

Abstract

top
Several equivalent conditions are given for the existence of real-valued Baire functions of all classes on a type of K -analytic spaces, called disjoint analytic spaces, and on all pseudocompact spaces. The sequential stability index for the Banach space of bounded continuous real-valued functions on these spaces is shown to be either 0 , 1 , or Ω (the first uncountable ordinal). In contrast, the space of bounded real-valued Baire functions of class 1 is shown to contain closed linear subspaces with index α for each countable ordinal α . The sequential stability index for linear subspaces of continuous real-valued functions on a compact space is shown to be invariant under isomorphic embeddings in the space of continuous real-valued functions on any compact space.

How to cite

top

Jayne, J. E.. "Space of Baire functions. I." Annales de l'institut Fourier 24.4 (1974): 47-76. <http://eudml.org/doc/74203>.

@article{Jayne1974,
abstract = {Several equivalent conditions are given for the existence of real-valued Baire functions of all classes on a type of $\{\bf K\}$-analytic spaces, called disjoint analytic spaces, and on all pseudocompact spaces. The sequential stability index for the Banach space of bounded continuous real-valued functions on these spaces is shown to be either $0,1$, or $\Omega $ (the first uncountable ordinal). In contrast, the space of bounded real-valued Baire functions of class 1 is shown to contain closed linear subspaces with index $\alpha $ for each countable ordinal $\alpha $. The sequential stability index for linear subspaces of continuous real-valued functions on a compact space is shown to be invariant under isomorphic embeddings in the space of continuous real-valued functions on any compact space.},
author = {Jayne, J. E.},
journal = {Annales de l'institut Fourier},
language = {eng},
number = {4},
pages = {47-76},
publisher = {Association des Annales de l'Institut Fourier},
title = {Space of Baire functions. I},
url = {http://eudml.org/doc/74203},
volume = {24},
year = {1974},
}

TY - JOUR
AU - Jayne, J. E.
TI - Space of Baire functions. I
JO - Annales de l'institut Fourier
PY - 1974
PB - Association des Annales de l'Institut Fourier
VL - 24
IS - 4
SP - 47
EP - 76
AB - Several equivalent conditions are given for the existence of real-valued Baire functions of all classes on a type of ${\bf K}$-analytic spaces, called disjoint analytic spaces, and on all pseudocompact spaces. The sequential stability index for the Banach space of bounded continuous real-valued functions on these spaces is shown to be either $0,1$, or $\Omega $ (the first uncountable ordinal). In contrast, the space of bounded real-valued Baire functions of class 1 is shown to contain closed linear subspaces with index $\alpha $ for each countable ordinal $\alpha $. The sequential stability index for linear subspaces of continuous real-valued functions on a compact space is shown to be invariant under isomorphic embeddings in the space of continuous real-valued functions on any compact space.
LA - eng
UR - http://eudml.org/doc/74203
ER -

References

top
  1. [1] P. S. ALEXANDROFF et P. S. URYSOHN, Mémoire sur les espaces topologiques compacts, Verh. Akad. Wetensch., Amsterdam, 14 (1929), 1-96. Zbl55.0960.02JFM55.0960.02
  2. [2] J. M. ANDERSON and J. E. JAYNE, The sequential stability index of a function space, Mathematika, 20 (1973), 210-213. Zbl0334.46027MR49 #11240
  3. [3] A. V. ARHANGEL'SKII, On the cardinality of first countable compacta, Soviet Math. Dokl., 10 (1969), 951-955. 
  4. [4] M. BRELOT, On topologies and Boundaries in Potential Theory, Lecture Notes in Mathematics No 175, Springer-Verlag, Berlin (1971). Zbl0222.31014MR43 #7654
  5. [5] A. V. ČERNAVSKIǏ, Remarks on a theorem of Schneider on the existence in perfectly normal bicompacta of an A-set which is not a B-set, Vestnik Moskov. Univ. Ser. I Mat. Meh., 2 (1962), 20. 
  6. [6] M. M. CHOBAN, Baire sets in complete topological spaces, Ukrain Mat. Z., 22 (1970), 330-342. 
  7. [7] G. CHOQUET, Ensembles boréliens et analytiques dans les espaces topologiques, C. R. Acad. Sci. Paris, 232 (1951), 2174-2176. Zbl0042.05403MR13,19e
  8. [8] G. CHOQUET, Ensembles K-analytiques et K-Sousliniens. Cas général et cas métrique, Ann. Inst. Fourier, Grenoble, 9 (1959), 75-81. Zbl0094.03403MR22 #3692a
  9. [9] Z. FROLÍK, A contribution to the descriptive theory of sets. General Topology and its Relations to Modern Analysis and Algebra I., Proc. Prague Symp., Academic Press, (1962). Zbl0116.14202
  10. [10] Z. FROLÍK, A survey of separable descriptive theory of sets and spaces, Czech. Math. J., 20 (95), (1970), 406-467. Zbl0223.54028MR42 #1660
  11. [11] L. GILLMAN et M. JERISON, Rings of Continuous Functions. Van Nostrand Co., Princeton, (1960). Zbl0093.30001MR22 #6994
  12. [12] F. HAUSDORFF, Set Theory, Chelsea, New York, (1957). Zbl0081.04601MR19,111a
  13. [13] R. HAYDON, Trois exemples dans la théorie des espaces de fonctions continues, C. R. Acad. Sci. Paris, A 276 (1973), 685-687. Zbl0246.46011MR48 #4675
  14. [14] J. E. JAYNE, Descriptive set theory in compact spaces, Notices Amer. Math. Soc., 17 (1970), 268. 
  15. [15] J. E. JAYNE, Spaces of Baire functions, Baire classes, and Suslin sets. Doctoral dissertation, Columbia University, New York, (1971). 
  16. [16] J. E. JAYNE, Topological representations of measurable spaces. General Topology and its Relations to Modern Analysis and Algebra III, Proc. Prague Symp., Academic Press, (1972). Zbl0313.54045
  17. [17] J. E. JAYNE, Characterizations and metrization of proper analytic spaces, Inventiones Mathematicae, 22 (1973), 51-62. Zbl0267.54036MR48 #9687
  18. [18] K. KURATOWSKI, Topology, Vol. I, Academic Press, New York, (1966). Zbl0158.40802MR36 #840
  19. [19] H. LEBESGUE, Sur les fonctions représentables analytiquement, J. Math. Pures Appl., 1 (1905), 139-216. Zbl36.0453.02JFM36.0453.02
  20. [20] E. R. LORCH, L'intégration dans les espaces généraux, Bull. Soc. Math. France, 88 (1960), 469-497. Zbl0094.09103MR23 #A2502
  21. [21] E. R. LORCH, Compactification, Baire functions, and Daniell integration, Acta Sci. Math. (Szeged), 24 (1963), 204-218. Zbl0117.09303MR29 #584
  22. [22] P. R. MEYER, The Baire order problem for compact spaces, Duke Math. J., 33 (1966), 33-40. Zbl0138.17602MR32 #8307
  23. [23] P. R. MEYER, Function spaces and the Aleksandrov-Urysohn conjecture, Ann. Mat. Pura Appl., 86 (1970), 25-29. 
  24. [24] A. PELCZYŃSKI et Z. SEMADENI, Spaces of continuous functions III, [The space C(X) for X without perfect subsets], Studia Math., 18 (1959), 211-222. Zbl0091.27803MR21 #6528
  25. [25] V. I. PONOMAREV, Borel sets in perfectly normal bicompacta, Soviet Math. Dokl., 7 (1966), 1236-1239. Zbl0169.54201MR34 #3527
  26. [26] C. A. ROGERS, Descriptive Borel sets, Proc. Roy. Soc., A 286 (1965), 455-478. Zbl0158.20202MR32 #2536
  27. [28] W. RUDIN, Continuous functions on compact spaces without perfect subsets, Proc. Amer. Math. Soc., 8 (1957), 39-42. Zbl0077.31103MR19,46b
  28. [29] D. SARASON, A remark on the weak-star topology of l∞, Studia Math., 30 (1968), 355-359. Zbl0159.18001MR38 #2581
  29. [30] W. SIERPIŃSKI, Hypothèse du Continu, Monografje Matematyczne, Warsaw, 4 (1934). Zbl0009.30201JFM60.0035.01
  30. [31] A. D. TAǏMANOV, On closed mappings II, Mat. Sb. (N.S.), 52 (94), 579-588, (1960). Zbl0127.38704MR22 #9957

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.