The dual of weak L p

Michael Cwikel

Annales de l'institut Fourier (1975)

  • Volume: 25, Issue: 2, page 81-126
  • ISSN: 0373-0956

Abstract

top
For 1 < p < , a characterization is given of the dual space of weak L p taken over a non atomic measure space.

How to cite

top

Cwikel, Michael. "The dual of weak $L^p$." Annales de l'institut Fourier 25.2 (1975): 81-126. <http://eudml.org/doc/74233>.

@article{Cwikel1975,
abstract = {For $1&lt; p&lt; \infty $, a characterization is given of the dual space of weak $L^p$ taken over a non atomic measure space.},
author = {Cwikel, Michael},
journal = {Annales de l'institut Fourier},
language = {eng},
number = {2},
pages = {81-126},
publisher = {Association des Annales de l'Institut Fourier},
title = {The dual of weak $L^p$},
url = {http://eudml.org/doc/74233},
volume = {25},
year = {1975},
}

TY - JOUR
AU - Cwikel, Michael
TI - The dual of weak $L^p$
JO - Annales de l'institut Fourier
PY - 1975
PB - Association des Annales de l'Institut Fourier
VL - 25
IS - 2
SP - 81
EP - 126
AB - For $1&lt; p&lt; \infty $, a characterization is given of the dual space of weak $L^p$ taken over a non atomic measure space.
LA - eng
UR - http://eudml.org/doc/74233
ER -

References

top
  1. [1] E. BISHOP and R.R. PHELPS, A proof that every Banach space is subreflexive, Bull. Amer. Math. Soc., 67 (1961), 97-98. Zbl0098.07905
  2. [2] M. CWIKEL, On the conjugates of some function space, Studia Math., 45 (1973), 49-55. Zbl0098.07905MR23 #A503
  3. [3] M. CWIKEL, Some results in the Lions-Peetre interpolation theory, Thesis, Weizmann Institute of Science, 1973. Zbl0219.46026MR51 #6387
  4. [4] M. CWIKEL and Y. SAGHER, L(p, ∞)*, Indiana Univ. Math. J., 21 (1972), 781-786. 
  5. [5] N. DUNFORD and J.T. SCHWARTZ, Linear Operators, Part I : General Theory, Interscience, New York 1958. Zbl0244.46035MR45 #4139
  6. [6] R.A. HUNT, On L(p,q) spaces, L'Enseignement Math., 12 (1966), 249-276. Zbl0084.10402MR22 #8302
  7. [7] R.C. JAMES, Reflexivity and the sup of linear functionals, Israël J. Math., 13 (1972), 289-330. Zbl0181.40301MR36 #6921
  8. [8] B. MUCKENHOUPT, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc., 165 (1972), 207-226. Zbl0252.46012MR49 #3506

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.