Is an operator on weak which commutes with translations a convolution ?
Luca Brandolini; Leonardo Colzani
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1994)
- Volume: 21, Issue: 2, page 267-278
- ISSN: 0391-173X
Access Full Article
topHow to cite
topReferences
top- [1] L. Colzani, Translation invariant operators on Lorentz spaces. Ann. Scuola Norm. Sup. Pisa Cl. Sci.14 (1987), 257-276. Zbl0655.47025MR939629
- [2] M. Cwikel, On the conjugate of some function spaces. Studia Math.45 (1973), 49-55. Zbl0219.46026MR370158
- [3] M. Cwikel, The Dual of Weak Lp. Ann. Inst. Fourier (Grenoble) 25 (1975), 81-126. Zbl0301.46025MR407582
- [4] N.J. Kalton, Representations of operators between function spaces. Indiana Un. Math. J.33 (1984), 639-665. Zbl0577.47029MR756152
- [5] W. Rudin, Invariant means on L∞. Studia Math.44 (1972), 219-227. Zbl0215.47004
- [6] A.M. Shteinberg, Translation invariant operators in Lorentz spaces. Functional Anal. Appl.20 (1986), 166-168. Zbl0605.47033MR847159
- [7] P. Sjögren, Translation invariant operators on Weak L 1. J. Funct. Anal.89 (1990), 410-427. Zbl0705.47028MR1042216
- [8] E.M. Stein - G. Weiss, Introduction to Fourier analysis on euclidean spaces. Princeton University Press, Princeton, 1971. Zbl0232.42007MR304972