Is an operator on weak which commutes with translations a convolution ?

Luca Brandolini; Leonardo Colzani

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1994)

  • Volume: 21, Issue: 2, page 267-278
  • ISSN: 0391-173X

How to cite

top

Brandolini, Luca, and Colzani, Leonardo. "Is an operator on weak $L^P$ which commutes with translations a convolution ?." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 21.2 (1994): 267-278. <http://eudml.org/doc/84177>.

@article{Brandolini1994,
author = {Brandolini, Luca, Colzani, Leonardo},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {absolutely continuous; singular; locally compact group with left Haar measure; translation invariant operators},
language = {eng},
number = {2},
pages = {267-278},
publisher = {Scuola normale superiore},
title = {Is an operator on weak $L^P$ which commutes with translations a convolution ?},
url = {http://eudml.org/doc/84177},
volume = {21},
year = {1994},
}

TY - JOUR
AU - Brandolini, Luca
AU - Colzani, Leonardo
TI - Is an operator on weak $L^P$ which commutes with translations a convolution ?
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1994
PB - Scuola normale superiore
VL - 21
IS - 2
SP - 267
EP - 278
LA - eng
KW - absolutely continuous; singular; locally compact group with left Haar measure; translation invariant operators
UR - http://eudml.org/doc/84177
ER -

References

top
  1. [1] L. Colzani, Translation invariant operators on Lorentz spaces. Ann. Scuola Norm. Sup. Pisa Cl. Sci.14 (1987), 257-276. Zbl0655.47025MR939629
  2. [2] M. Cwikel, On the conjugate of some function spaces. Studia Math.45 (1973), 49-55. Zbl0219.46026MR370158
  3. [3] M. Cwikel, The Dual of Weak Lp. Ann. Inst. Fourier (Grenoble) 25 (1975), 81-126. Zbl0301.46025MR407582
  4. [4] N.J. Kalton, Representations of operators between function spaces. Indiana Un. Math. J.33 (1984), 639-665. Zbl0577.47029MR756152
  5. [5] W. Rudin, Invariant means on L∞. Studia Math.44 (1972), 219-227. Zbl0215.47004
  6. [6] A.M. Shteinberg, Translation invariant operators in Lorentz spaces. Functional Anal. Appl.20 (1986), 166-168. Zbl0605.47033MR847159
  7. [7] P. Sjögren, Translation invariant operators on Weak L 1. J. Funct. Anal.89 (1990), 410-427. Zbl0705.47028MR1042216
  8. [8] E.M. Stein - G. Weiss, Introduction to Fourier analysis on euclidean spaces. Princeton University Press, Princeton, 1971. Zbl0232.42007MR304972

NotesEmbed ?

top

You must be logged in to post comments.