Is an operator on weak L P which commutes with translations a convolution ?

Luca Brandolini; Leonardo Colzani

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1994)

  • Volume: 21, Issue: 2, page 267-278
  • ISSN: 0391-173X

How to cite

top

Brandolini, Luca, and Colzani, Leonardo. "Is an operator on weak $L^P$ which commutes with translations a convolution ?." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 21.2 (1994): 267-278. <http://eudml.org/doc/84177>.

@article{Brandolini1994,
author = {Brandolini, Luca, Colzani, Leonardo},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {absolutely continuous; singular; locally compact group with left Haar measure; translation invariant operators},
language = {eng},
number = {2},
pages = {267-278},
publisher = {Scuola normale superiore},
title = {Is an operator on weak $L^P$ which commutes with translations a convolution ?},
url = {http://eudml.org/doc/84177},
volume = {21},
year = {1994},
}

TY - JOUR
AU - Brandolini, Luca
AU - Colzani, Leonardo
TI - Is an operator on weak $L^P$ which commutes with translations a convolution ?
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1994
PB - Scuola normale superiore
VL - 21
IS - 2
SP - 267
EP - 278
LA - eng
KW - absolutely continuous; singular; locally compact group with left Haar measure; translation invariant operators
UR - http://eudml.org/doc/84177
ER -

References

top
  1. [1] L. Colzani, Translation invariant operators on Lorentz spaces. Ann. Scuola Norm. Sup. Pisa Cl. Sci.14 (1987), 257-276. Zbl0655.47025MR939629
  2. [2] M. Cwikel, On the conjugate of some function spaces. Studia Math.45 (1973), 49-55. Zbl0219.46026MR370158
  3. [3] M. Cwikel, The Dual of Weak Lp. Ann. Inst. Fourier (Grenoble) 25 (1975), 81-126. Zbl0301.46025MR407582
  4. [4] N.J. Kalton, Representations of operators between function spaces. Indiana Un. Math. J.33 (1984), 639-665. Zbl0577.47029MR756152
  5. [5] W. Rudin, Invariant means on L∞. Studia Math.44 (1972), 219-227. Zbl0215.47004
  6. [6] A.M. Shteinberg, Translation invariant operators in Lorentz spaces. Functional Anal. Appl.20 (1986), 166-168. Zbl0605.47033MR847159
  7. [7] P. Sjögren, Translation invariant operators on Weak L 1. J. Funct. Anal.89 (1990), 410-427. Zbl0705.47028MR1042216
  8. [8] E.M. Stein - G. Weiss, Introduction to Fourier analysis on euclidean spaces. Princeton University Press, Princeton, 1971. Zbl0232.42007MR304972

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.