On the representation of Dirichlet forms

Lars-Erik Andersson

Annales de l'institut Fourier (1975)

  • Volume: 25, Issue: 3-4, page 11-25
  • ISSN: 0373-0956

Abstract

top
A general representation theorem is obtained for positive quadratic forms, defined on C 00 1 ( Ω ) (the space of continuously differentiable functions with compact support contained in Ω R n ) which are local and on which all normal contractions operate.

How to cite

top

Andersson, Lars-Erik. "On the representation of Dirichlet forms." Annales de l'institut Fourier 25.3-4 (1975): 11-25. <http://eudml.org/doc/74236>.

@article{Andersson1975,
abstract = {A general representation theorem is obtained for positive quadratic forms, defined on $C^1_\{00\}(\Omega )$ (the space of continuously differentiable functions with compact support contained in $\Omega \subset \{\bf R\}^n$) which are local and on which all normal contractions operate.},
author = {Andersson, Lars-Erik},
journal = {Annales de l'institut Fourier},
language = {eng},
number = {3-4},
pages = {11-25},
publisher = {Association des Annales de l'Institut Fourier},
title = {On the representation of Dirichlet forms},
url = {http://eudml.org/doc/74236},
volume = {25},
year = {1975},
}

TY - JOUR
AU - Andersson, Lars-Erik
TI - On the representation of Dirichlet forms
JO - Annales de l'institut Fourier
PY - 1975
PB - Association des Annales de l'Institut Fourier
VL - 25
IS - 3-4
SP - 11
EP - 25
AB - A general representation theorem is obtained for positive quadratic forms, defined on $C^1_{00}(\Omega )$ (the space of continuously differentiable functions with compact support contained in $\Omega \subset {\bf R}^n$) which are local and on which all normal contractions operate.
LA - eng
UR - http://eudml.org/doc/74236
ER -

References

top
  1. [1] G. ALLAIN, Sur la représentation des formes de Dirichlet, Université Paris XI, Thèse de 3e cycle, Septembre 1973. 
  2. [2] L.-E. ANDERSSON, On the representation of Dirichlet forms, Report n° 6, 1974, Institut Mittag-Leffler. 
  3. [3] A. BEURLING and J. DENY, Dirichlet spaces, Proc. Nat. Ac. Sc., 45 (1959), 208-215. Zbl0089.08201MR21 #5098
  4. [4] J. DENY, Méthodes hilbertiennes en théorie du Potentiel, cours du C.I.M.E., 1969. Zbl0212.13401
  5. [5] J. DENY, Principe complet du maximum et contraction, Ann. Inst. Fourier, 15-1 (1965), 259-271. Zbl0144.15504MR32 #5913
  6. [6] I. M. GELFAND and N. Ya VILENKIN, Generalized functions, volume 4, Academic press, 1964. 
  7. [7] J. PEETRE, Rectification à l'article « une caractérisation abstraite des opérateurs différentiels », Math. Scand., 8 (1960), 116-120. Zbl0097.10402MR23 #A1923
  8. [8] L. SCHWARTZ, Théorie des distributions, Hermann, Paris, 1973. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.