On vector measures

Corneliu Constantinescu

Annales de l'institut Fourier (1975)

  • Volume: 25, Issue: 3-4, page 139-161
  • ISSN: 0373-0956

Abstract

top
Let be the Banach space of real measures on a σ -ring R , let ' be its dual, let E be a quasi-complete locally convex space, let E ' be its dual, and let μ be an E -valued measure on R . If is shown that for any θ ' there exists an element θ d μ of E such that x ' μ , θ = θ d μ , x ' for any x ' E ' and that the map θ θ d μ : ' E is order continuous. It follows that the closed convex hull of μ ( R ) is weakly compact.

How to cite

top

Constantinescu, Corneliu. "On vector measures." Annales de l'institut Fourier 25.3-4 (1975): 139-161. <http://eudml.org/doc/74238>.

@article{Constantinescu1975,
abstract = {Let $\{\cal M\}$ be the Banach space of real measures on a $\sigma $-ring $\{\bf R\}$, let $\{\cal M\}^\{\prime \}$ be its dual, let $E$ be a quasi-complete locally convex space, let $E^\{\prime \}$ be its dual, and let $\mu $ be an $E$-valued measure on $\{\bf R\}$. If is shown that for any $\theta \in \{\cal M\}^\{\prime \}$ there exists an element $\int \theta \ d\mu $ of $E$ such that $\langle x^\{\prime \}\circ \mu ,\theta \rangle = \big \langle \int \theta \ d\mu ,x^\{\prime \}\big \rangle $ for any $x^\{\prime \}\in E^\{\prime \}$ and that the map\begin\{\}\theta \rightarrow \int \theta \ d\mu : \{\cal M\}^\{\prime \} \rightarrow E\end\{\}is order continuous. It follows that the closed convex hull of $\mu (\{\bf R\})$ is weakly compact.},
author = {Constantinescu, Corneliu},
journal = {Annales de l'institut Fourier},
language = {eng},
number = {3-4},
pages = {139-161},
publisher = {Association des Annales de l'Institut Fourier},
title = {On vector measures},
url = {http://eudml.org/doc/74238},
volume = {25},
year = {1975},
}

TY - JOUR
AU - Constantinescu, Corneliu
TI - On vector measures
JO - Annales de l'institut Fourier
PY - 1975
PB - Association des Annales de l'Institut Fourier
VL - 25
IS - 3-4
SP - 139
EP - 161
AB - Let ${\cal M}$ be the Banach space of real measures on a $\sigma $-ring ${\bf R}$, let ${\cal M}^{\prime }$ be its dual, let $E$ be a quasi-complete locally convex space, let $E^{\prime }$ be its dual, and let $\mu $ be an $E$-valued measure on ${\bf R}$. If is shown that for any $\theta \in {\cal M}^{\prime }$ there exists an element $\int \theta \ d\mu $ of $E$ such that $\langle x^{\prime }\circ \mu ,\theta \rangle = \big \langle \int \theta \ d\mu ,x^{\prime }\big \rangle $ for any $x^{\prime }\in E^{\prime }$ and that the map\begin{}\theta \rightarrow \int \theta \ d\mu : {\cal M}^{\prime } \rightarrow E\end{}is order continuous. It follows that the closed convex hull of $\mu ({\bf R})$ is weakly compact.
LA - eng
UR - http://eudml.org/doc/74238
ER -

References

top
  1. [1] N. DUNFORD and J. T. SCHWARTZ, Linear operators Part. I., Interscience Publishers Inc., New York, 1958. Zbl0084.10402
  2. [2] J. HOFFMANN-JØRGENSEN, Vector measures, Math. Scand., 28 (1971), 5-32. Zbl0217.38001
  3. [3] J. LABUDA, Sur quelques généralisations des théorèmes de Nikodym et de Vitali-Hahn-Saks, Bull. Acad. Pol. Sci. Math., 20 (1972), 447-456. Zbl0242.28003MR49 #5290
  4. [4] J. LABUDA, Sur le théorème de Bartle-Dunford-Schwartz, Bull. Acad. Pol. Sci. Math., 20 (1972), 549-553. Zbl0242.28010MR47 #5218
  5. [5] D. LANDERS and L. ROGGE, The Hahn-Vitali-Saks and the uniform boundedness theorem in topological groups, Manuscripta Math., 4 (1971), 351-359. Zbl0217.14902MR44 #402
  6. [6] A. P. ROBERTSON, Unconditional convergence and the Vitali-Hahn-Saks theorem, Bull. Soc. Math. France, Mémoire 31-32 (1972), 335-341. Zbl0244.46059MR51 #13622
  7. [7] E. THOMAS, L'intégration par rapport à une mesure de Radon vectorielle, Ann. Inst. Fourier 20, 2 (1970), 55-191. Zbl0195.06101MR57 #3348
  8. [8] I. TWEDDLE, Vector-valued measures, Proc. London Math. Soc., 20 (1970), 469-485. Zbl0189.44903MR41 #3707
  9. [9] L. DREWNOWSKI, On control submeasures anal measures, Studia Math., 50 (1974), 203-224. Zbl0285.28015MR50 #4881
  10. [10] K. MUSIAK, Absolute continuity of vector measures, Coll. Math., 27 (1973), 319-321. Zbl0262.46049MR48 #6362

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.