On vector measures
Annales de l'institut Fourier (1975)
- Volume: 25, Issue: 3-4, page 139-161
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topConstantinescu, Corneliu. "On vector measures." Annales de l'institut Fourier 25.3-4 (1975): 139-161. <http://eudml.org/doc/74238>.
@article{Constantinescu1975,
abstract = {Let $\{\cal M\}$ be the Banach space of real measures on a $\sigma $-ring $\{\bf R\}$, let $\{\cal M\}^\{\prime \}$ be its dual, let $E$ be a quasi-complete locally convex space, let $E^\{\prime \}$ be its dual, and let $\mu $ be an $E$-valued measure on $\{\bf R\}$. If is shown that for any $\theta \in \{\cal M\}^\{\prime \}$ there exists an element $\int \theta \ d\mu $ of $E$ such that $\langle x^\{\prime \}\circ \mu ,\theta \rangle = \big \langle \int \theta \ d\mu ,x^\{\prime \}\big \rangle $ for any $x^\{\prime \}\in E^\{\prime \}$ and that the map\begin\{\}\theta \rightarrow \int \theta \ d\mu : \{\cal M\}^\{\prime \} \rightarrow E\end\{\}is order continuous. It follows that the closed convex hull of $\mu (\{\bf R\})$ is weakly compact.},
author = {Constantinescu, Corneliu},
journal = {Annales de l'institut Fourier},
language = {eng},
number = {3-4},
pages = {139-161},
publisher = {Association des Annales de l'Institut Fourier},
title = {On vector measures},
url = {http://eudml.org/doc/74238},
volume = {25},
year = {1975},
}
TY - JOUR
AU - Constantinescu, Corneliu
TI - On vector measures
JO - Annales de l'institut Fourier
PY - 1975
PB - Association des Annales de l'Institut Fourier
VL - 25
IS - 3-4
SP - 139
EP - 161
AB - Let ${\cal M}$ be the Banach space of real measures on a $\sigma $-ring ${\bf R}$, let ${\cal M}^{\prime }$ be its dual, let $E$ be a quasi-complete locally convex space, let $E^{\prime }$ be its dual, and let $\mu $ be an $E$-valued measure on ${\bf R}$. If is shown that for any $\theta \in {\cal M}^{\prime }$ there exists an element $\int \theta \ d\mu $ of $E$ such that $\langle x^{\prime }\circ \mu ,\theta \rangle = \big \langle \int \theta \ d\mu ,x^{\prime }\big \rangle $ for any $x^{\prime }\in E^{\prime }$ and that the map\begin{}\theta \rightarrow \int \theta \ d\mu : {\cal M}^{\prime } \rightarrow E\end{}is order continuous. It follows that the closed convex hull of $\mu ({\bf R})$ is weakly compact.
LA - eng
UR - http://eudml.org/doc/74238
ER -
References
top- [1] N. DUNFORD and J. T. SCHWARTZ, Linear operators Part. I., Interscience Publishers Inc., New York, 1958. Zbl0084.10402
- [2] J. HOFFMANN-JØRGENSEN, Vector measures, Math. Scand., 28 (1971), 5-32. Zbl0217.38001
- [3] J. LABUDA, Sur quelques généralisations des théorèmes de Nikodym et de Vitali-Hahn-Saks, Bull. Acad. Pol. Sci. Math., 20 (1972), 447-456. Zbl0242.28003MR49 #5290
- [4] J. LABUDA, Sur le théorème de Bartle-Dunford-Schwartz, Bull. Acad. Pol. Sci. Math., 20 (1972), 549-553. Zbl0242.28010MR47 #5218
- [5] D. LANDERS and L. ROGGE, The Hahn-Vitali-Saks and the uniform boundedness theorem in topological groups, Manuscripta Math., 4 (1971), 351-359. Zbl0217.14902MR44 #402
- [6] A. P. ROBERTSON, Unconditional convergence and the Vitali-Hahn-Saks theorem, Bull. Soc. Math. France, Mémoire 31-32 (1972), 335-341. Zbl0244.46059MR51 #13622
- [7] E. THOMAS, L'intégration par rapport à une mesure de Radon vectorielle, Ann. Inst. Fourier 20, 2 (1970), 55-191. Zbl0195.06101MR57 #3348
- [8] I. TWEDDLE, Vector-valued measures, Proc. London Math. Soc., 20 (1970), 469-485. Zbl0189.44903MR41 #3707
- [9] L. DREWNOWSKI, On control submeasures anal measures, Studia Math., 50 (1974), 203-224. Zbl0285.28015MR50 #4881
- [10] K. MUSIAK, Absolute continuity of vector measures, Coll. Math., 27 (1973), 319-321. Zbl0262.46049MR48 #6362
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.