Stochastic process measurability conditions

J. L. Doob

Annales de l'institut Fourier (1975)

  • Volume: 25, Issue: 3-4, page 163-176
  • ISSN: 0373-0956

Abstract

top
If the separability of the separable process definition is replaced by a set of optional (predictable) times, a new property is obtained, optional (predictable) separability. A well measurable (accessible) process is necessarily optionally (predictably) separable. Proofs of limit properties of a separable process become proofs of the same limit properties of a well measurable (predictable) process.

How to cite

top

Doob, J. L.. "Stochastic process measurability conditions." Annales de l'institut Fourier 25.3-4 (1975): 163-176. <http://eudml.org/doc/74239>.

@article{Doob1975,
abstract = {If the separability of the separable process definition is replaced by a set of optional (predictable) times, a new property is obtained, optional (predictable) separability. A well measurable (accessible) process is necessarily optionally (predictably) separable. Proofs of limit properties of a separable process become proofs of the same limit properties of a well measurable (predictable) process.},
author = {Doob, J. L.},
journal = {Annales de l'institut Fourier},
language = {eng},
number = {3-4},
pages = {163-176},
publisher = {Association des Annales de l'Institut Fourier},
title = {Stochastic process measurability conditions},
url = {http://eudml.org/doc/74239},
volume = {25},
year = {1975},
}

TY - JOUR
AU - Doob, J. L.
TI - Stochastic process measurability conditions
JO - Annales de l'institut Fourier
PY - 1975
PB - Association des Annales de l'Institut Fourier
VL - 25
IS - 3-4
SP - 163
EP - 176
AB - If the separability of the separable process definition is replaced by a set of optional (predictable) times, a new property is obtained, optional (predictable) separability. A well measurable (accessible) process is necessarily optionally (predictably) separable. Proofs of limit properties of a separable process become proofs of the same limit properties of a well measurable (predictable) process.
LA - eng
UR - http://eudml.org/doc/74239
ER -

References

top
  1. [1] D. G. AUSTIN, G. A. EDGAR and A. Ionescu TULCEA, Pointwise convergence in terms of expectations, to appear. Zbl0276.60034
  2. [2] Kai Lai CHUNG, On the fundamental hypotheses of Hunt processes, Ist. Naz. Alta Mat., IX (1972), 43-52. Zbl0242.60031MR50 #11474
  3. [3] Cl. DELLACHERIE, Capacités et processus stochastiques, Ergeb. Math. Grenzgebiete, 67 (1972). Zbl0246.60032MR56 #6810
  4. [4] J.-F. MERTENS, Théorie des processus stochastiques généraux. Applications aux surmartingales, Z. Wahrscheinlichkeitstheorie, 22 (1972), 45-68. Zbl0236.60033MR49 #11616
  5. [5] P. A. MEYER, Le retournement du temps, d'après Chung et Walsh, Lecture Notes in Mathematics 191, Springer 1971, 213-236. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.