On Deny's characterization of the potential kernel for a convolution Feller semi-group

John C. Taylor

Annales de l'institut Fourier (1975)

  • Volume: 25, Issue: 3-4, page 519-537
  • ISSN: 0373-0956

Abstract

top
The convolution kernels V f = f * x on a homogeneous space E = G / K , where K is a compact sub-group of G , that satisfy the complete maximum principle are characterized.Deny’s result for abelian groups G , but with a stronger hypothesis, is a special case.

How to cite

top

Taylor, John C.. "On Deny's characterization of the potential kernel for a convolution Feller semi-group." Annales de l'institut Fourier 25.3-4 (1975): 519-537. <http://eudml.org/doc/74260>.

@article{Taylor1975,
abstract = {The convolution kernels $Vf = f * x$ on a homogeneous space $E = G/K$, where $K$ is a compact sub-group of $G$, that satisfy the complete maximum principle are characterized.Deny’s result for abelian groups $G$, but with a stronger hypothesis, is a special case.},
author = {Taylor, John C.},
journal = {Annales de l'institut Fourier},
language = {eng},
number = {3-4},
pages = {519-537},
publisher = {Association des Annales de l'Institut Fourier},
title = {On Deny's characterization of the potential kernel for a convolution Feller semi-group},
url = {http://eudml.org/doc/74260},
volume = {25},
year = {1975},
}

TY - JOUR
AU - Taylor, John C.
TI - On Deny's characterization of the potential kernel for a convolution Feller semi-group
JO - Annales de l'institut Fourier
PY - 1975
PB - Association des Annales de l'Institut Fourier
VL - 25
IS - 3-4
SP - 519
EP - 537
AB - The convolution kernels $Vf = f * x$ on a homogeneous space $E = G/K$, where $K$ is a compact sub-group of $G$, that satisfy the complete maximum principle are characterized.Deny’s result for abelian groups $G$, but with a stronger hypothesis, is a special case.
LA - eng
UR - http://eudml.org/doc/74260
ER -

References

top
  1. [1] J. DENY, Noyaux de Convolution de Hunt et Noyaux Associés à une Famille Fondamentale, Ann. Inst. Fourier, 12 (1962), 643-667. Zbl0101.08302MR25 #3189
  2. [2] P. A. MEYER, Probability and Potentials, Blaisdell Publishing Company, Waltham, Mass., 1966. Zbl0138.10401MR34 #5119
  3. [3] J.-C. TAYLOR, On the existence of sub-Markovian resolvents, Invent. Math., 17 (1972), 85-93. Zbl0229.31014MR49 #9961
  4. [4] J.-C. TAYLOR, Ray Processes on Locally Compact Spaces, Math. Annalen. 208 (1974), 233-248. Zbl0266.31006MR51 #4424
  5. [5] J.-C. TAYLOR, On the existence of resolvents, Séminaire de probabilité VII, Université de Strasbourg (1971-1972), Springer, Lecture Notes, 321, 291-300, Berlin, 1973. Zbl0265.60010

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.