On Deny's characterization of the potential kernel for a convolution Feller semi-group

John C. Taylor

Annales de l'institut Fourier (1975)

  • Volume: 25, Issue: 3-4, page 519-537
  • ISSN: 0373-0956

Abstract

top
The convolution kernels on a homogeneous space , where is a compact sub-group of , that satisfy the complete maximum principle are characterized.Deny’s result for abelian groups , but with a stronger hypothesis, is a special case.

How to cite

top

Taylor, John C.. "On Deny's characterization of the potential kernel for a convolution Feller semi-group." Annales de l'institut Fourier 25.3-4 (1975): 519-537. <http://eudml.org/doc/74260>.

@article{Taylor1975,
abstract = {The convolution kernels $Vf = f * x$ on a homogeneous space $E = G/K$, where $K$ is a compact sub-group of $G$, that satisfy the complete maximum principle are characterized.Deny’s result for abelian groups $G$, but with a stronger hypothesis, is a special case.},
author = {Taylor, John C.},
journal = {Annales de l'institut Fourier},
language = {eng},
number = {3-4},
pages = {519-537},
publisher = {Association des Annales de l'Institut Fourier},
title = {On Deny's characterization of the potential kernel for a convolution Feller semi-group},
url = {http://eudml.org/doc/74260},
volume = {25},
year = {1975},
}

TY - JOUR
AU - Taylor, John C.
TI - On Deny's characterization of the potential kernel for a convolution Feller semi-group
JO - Annales de l'institut Fourier
PY - 1975
PB - Association des Annales de l'Institut Fourier
VL - 25
IS - 3-4
SP - 519
EP - 537
AB - The convolution kernels $Vf = f * x$ on a homogeneous space $E = G/K$, where $K$ is a compact sub-group of $G$, that satisfy the complete maximum principle are characterized.Deny’s result for abelian groups $G$, but with a stronger hypothesis, is a special case.
LA - eng
UR - http://eudml.org/doc/74260
ER -

References

top
  1. [1] J. DENY, Noyaux de Convolution de Hunt et Noyaux Associés à une Famille Fondamentale, Ann. Inst. Fourier, 12 (1962), 643-667. Zbl0101.08302MR25 #3189
  2. [2] P. A. MEYER, Probability and Potentials, Blaisdell Publishing Company, Waltham, Mass., 1966. Zbl0138.10401MR34 #5119
  3. [3] J.-C. TAYLOR, On the existence of sub-Markovian resolvents, Invent. Math., 17 (1972), 85-93. Zbl0229.31014MR49 #9961
  4. [4] J.-C. TAYLOR, Ray Processes on Locally Compact Spaces, Math. Annalen. 208 (1974), 233-248. Zbl0266.31006MR51 #4424
  5. [5] J.-C. TAYLOR, On the existence of resolvents, Séminaire de probabilité VII, Université de Strasbourg (1971-1972), Springer, Lecture Notes, 321, 291-300, Berlin, 1973. Zbl0265.60010

NotesEmbed ?

top

You must be logged in to post comments.