H -cones and potential theory

Nicu Boboc; Gheorghe Bucur; A. Cornea

Annales de l'institut Fourier (1975)

  • Volume: 25, Issue: 3-4, page 71-108
  • ISSN: 0373-0956

Abstract

top
The H -cone is an abstract model for the cone of positive superharmonic functions on a harmonic space or for the cone of excessive functions with respect to a resolvent family, having sufficiently many properties in order to develop a good deal of balayage theory and also to construct a dual concept which is also an H -cone. There are given an integral representation theorem and a representation theorem as an H -cone of functions for which fine topology, thinnes, negligible sets and the sheaf property are studied with respect to the fine topology.

How to cite

top

Boboc, Nicu, Bucur, Gheorghe, and Cornea, A.. "$H$-cones and potential theory." Annales de l'institut Fourier 25.3-4 (1975): 71-108. <http://eudml.org/doc/74261>.

@article{Boboc1975,
abstract = {The $H$-cone is an abstract model for the cone of positive superharmonic functions on a harmonic space or for the cone of excessive functions with respect to a resolvent family, having sufficiently many properties in order to develop a good deal of balayage theory and also to construct a dual concept which is also an $H$-cone. There are given an integral representation theorem and a representation theorem as an $H$-cone of functions for which fine topology, thinnes, negligible sets and the sheaf property are studied with respect to the fine topology.},
author = {Boboc, Nicu, Bucur, Gheorghe, Cornea, A.},
journal = {Annales de l'institut Fourier},
language = {eng},
number = {3-4},
pages = {71-108},
publisher = {Association des Annales de l'Institut Fourier},
title = {$H$-cones and potential theory},
url = {http://eudml.org/doc/74261},
volume = {25},
year = {1975},
}

TY - JOUR
AU - Boboc, Nicu
AU - Bucur, Gheorghe
AU - Cornea, A.
TI - $H$-cones and potential theory
JO - Annales de l'institut Fourier
PY - 1975
PB - Association des Annales de l'Institut Fourier
VL - 25
IS - 3-4
SP - 71
EP - 108
AB - The $H$-cone is an abstract model for the cone of positive superharmonic functions on a harmonic space or for the cone of excessive functions with respect to a resolvent family, having sufficiently many properties in order to develop a good deal of balayage theory and also to construct a dual concept which is also an $H$-cone. There are given an integral representation theorem and a representation theorem as an $H$-cone of functions for which fine topology, thinnes, negligible sets and the sheaf property are studied with respect to the fine topology.
LA - eng
UR - http://eudml.org/doc/74261
ER -

References

top
  1. [1] N. BOBOC, Sur les noyaux sur un espace mesurable, Principe de domination, Rev. Roumaine Math. Pures et Appl., n° 6 (1969). Zbl0182.15001MR43 #468
  2. [2] N. BOBOC, Gh. BUCUR and A. CORNEA, Cones of potentials on topological spaces, Rev. Roumaine Math. Pures et Appl., n° 6 (1973). Zbl0271.54009
  3. [3] N. BOBOC, C. CONSTANTINESCU and A. CORNEA, Semigroups of transitions on harmonic spaces, Rev. Roumaine Math. Pures et Appl., n° 6 (1967). Zbl0155.17302MR37 #1641
  4. [4] N. BOBOC et A. CORNEA, Cônes convexes ordonnés. H-cônes et adjoints de H-cônes, C. R. Acad. Sci. Paris, Sér. A, 270 (1970), 598-599. Zbl0188.17401
  5. [5] N. BOBOC et A. CORNEA, Cônes convexes ordonnés. H-cônes et biadjoints des H-cônes, C. R. Acad. Sci. Paris, Sér. A, 270 (1970), 1679-1682. Zbl0195.39903MR42 #7929
  6. [6] N. BOBOC et A. CORNEA, Cônes convexes ordonnés. Représentations intégrales, C. R. Acad. Sci. Paris, Sér. A, 271 (1970), 880-883. Zbl0211.13901MR49 #7469
  7. [7] M. BRELOT, Lectures on potential theory, Tata Institut Bombay, 1970. 
  8. [8] C. CONSTANTINESCU and A. CORNEA, Potential theory on Harmonic Spaces, Berlin-Heidelberg-New York, Springer, 1972. Zbl0248.31011MR54 #7817
  9. [9] B. FUGLEDE, Finely harmonic functions, Lecture Notes in Mathematics 289, 1972, Berlin-Heidelberg, New York, Springer. Zbl0248.31010MR56 #8883
  10. [10] R. M. HERVÉ, Recherches axiomatiques sur la théorie des fonctions surharmoniques et du potentiel, Ann. Inst. Fourier, 12 (1962), 415-571. Zbl0101.08103MR25 #3186
  11. [11] P. A. MEYER, Représentation intégrale des fonctions excessives, pp. 196-208, Séminaire de probabilité V. Université de Strasbourg, Lecture Notes in Math., 1971. Zbl0256.60050MR51 #13260
  12. [12] G. MOKOBODZKI, Structure des cônes de potentiels, Séminaire Bourbaki, n° 377, 1969-1970. Zbl0208.36903
  13. [13] G. MOKOBODZKI, Densité relative des deux potentiels comparables, Séminaire de Probabilité IV. Université de Strasbourg, 1970 Lecture Notes in Mathematics. Zbl0218.31014MR45 #3747

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.