Runge families and inductive limits of Stein spaces

Andrew Markoe

Annales de l'institut Fourier (1977)

  • Volume: 27, Issue: 3, page 117-127
  • ISSN: 0373-0956

Abstract

top
The general Stein union problem is solved: given an increasing sequence of Stein open sets, it is shown that the union X is Stein if and only if H 1 ( X , O X ) is Hausdorff separated.

How to cite

top

Markoe, Andrew. "Runge families and inductive limits of Stein spaces." Annales de l'institut Fourier 27.3 (1977): 117-127. <http://eudml.org/doc/74322>.

@article{Markoe1977,
abstract = {The general Stein union problem is solved: given an increasing sequence of Stein open sets, it is shown that the union $X$ is Stein if and only if $H^1(X,\{\bf O\}_X)$ is Hausdorff separated.},
author = {Markoe, Andrew},
journal = {Annales de l'institut Fourier},
language = {eng},
number = {3},
pages = {117-127},
publisher = {Association des Annales de l'Institut Fourier},
title = {Runge families and inductive limits of Stein spaces},
url = {http://eudml.org/doc/74322},
volume = {27},
year = {1977},
}

TY - JOUR
AU - Markoe, Andrew
TI - Runge families and inductive limits of Stein spaces
JO - Annales de l'institut Fourier
PY - 1977
PB - Association des Annales de l'Institut Fourier
VL - 27
IS - 3
SP - 117
EP - 127
AB - The general Stein union problem is solved: given an increasing sequence of Stein open sets, it is shown that the union $X$ is Stein if and only if $H^1(X,{\bf O}_X)$ is Hausdorff separated.
LA - eng
UR - http://eudml.org/doc/74322
ER -

References

top
  1. [1] A. ANDREOTTI and E. VESENTINI, Carleman estimates for the Laplace-Beltrami equation on complex manifolds Publ. Math., No. 25, IHES, Paris (1965). Zbl0138.06604
  2. [2] H. BEHNKE and P. THULLEN, Theorie der Funktionen mehrerer komplexer Veränderlichen, Zweite erweiterte Auflage, Springer-Verlag, Berlin 1970. Zbl0204.39502
  3. [3] J.E. FORNAESS, An increasing sequence of Stein manifolds whose limit is not Stein, to appear. Zbl0334.32017
  4. [4] H. GRAUERT, Charakterisierung der holomorph-vollständigen Raüme, Math. Ann., 129, (1955), 233-259. Zbl0064.32603MR17,80d
  5. [5] A. GROTHENDIECK, éléments de géométrie algébrique, III (première Partie), Publ. Math. No. 11, IHES, Paris, 1961. 
  6. [6] R. GUNNING and H. ROSSI, Analytic Functions of Several Complex Variables, Prentice Hall, Englewood Cliffs, N.J., 1965. Zbl0141.08601MR31 #4927
  7. [7] H. LAUFER, On Serre duality and envelopes of holomorphy, Trans. AMS, 128 (1967), 414-446. Zbl0166.33903MR36 #5393
  8. [8] J.-P. RAMIS and G. RUGET, Complexe dualisant et théorèmes de dualité en géométrie analytique complexe, Publ. Math., No. 38, IHES, Paris, 1971. Zbl0206.25006
  9. [9] J.-P. RAMIS, G. RUGET and J.-L. VERDIER, Dualité relative en géométrie analytique complexe, Inv. Math., (1971). Zbl0218.14010MR46 #7553
  10. [10] A. SILVA, Rungescherssatz and a condition for Steiness for the limit of an increasing sequence of Stein spaces. 
  11. [11] K. STEIN, Überlagerungen holomorph-vollständiger komplexer Raüme, Arch. Math., 7 (1956), 354-361. Zbl0072.08002MR18,933a
  12. [12] J. WERMER, An example concerning polynomial convexity, Math. Ann., 139 (1959), 147-150. Zbl0094.28302MR22 #12238
  13. [13] A. HIRSCHOWITZ, Pseudoconvexité au-dessus d'espaces plus ou moins homogènes, Inv. Math., 26 (1974), 303-322. Zbl0275.32009MR50 #10323
  14. [14] H. BHEHNKE and K. STEIN, Konvergente Folgen von Reguläritätsbereichen und die meromorphe Konvexität, Math. Ann., 116 (1939), 204-216. Zbl0020.37803JFM64.0322.03
  15. [15] A. MARKOE, Runge families and increasing unions of Stein spaces, research announcement, Bull. AMS, 82, No 5, (1976). Zbl0334.32016MR54 #3026

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.