Rungescher Satz and a condition for Steiness for the limit of an increasing sequence of Stein spaces

Alessandro Silva

Annales de l'institut Fourier (1978)

  • Volume: 28, Issue: 2, page 187-200
  • ISSN: 0373-0956

Abstract

top
A necessary and sufficient condition, which is a weak converse of a classical theorem of Behnke-Stein, in order that a limit of Stein spaces be again a Stein space is proved.

How to cite

top

Silva, Alessandro. "Rungescher Satz and a condition for Steiness for the limit of an increasing sequence of Stein spaces." Annales de l'institut Fourier 28.2 (1978): 187-200. <http://eudml.org/doc/74355>.

@article{Silva1978,
abstract = {A necessary and sufficient condition, which is a weak converse of a classical theorem of Behnke-Stein, in order that a limit of Stein spaces be again a Stein space is proved.},
author = {Silva, Alessandro},
journal = {Annales de l'institut Fourier},
language = {eng},
number = {2},
pages = {187-200},
publisher = {Association des Annales de l'Institut Fourier},
title = {Rungescher Satz and a condition for Steiness for the limit of an increasing sequence of Stein spaces},
url = {http://eudml.org/doc/74355},
volume = {28},
year = {1978},
}

TY - JOUR
AU - Silva, Alessandro
TI - Rungescher Satz and a condition for Steiness for the limit of an increasing sequence of Stein spaces
JO - Annales de l'institut Fourier
PY - 1978
PB - Association des Annales de l'Institut Fourier
VL - 28
IS - 2
SP - 187
EP - 200
AB - A necessary and sufficient condition, which is a weak converse of a classical theorem of Behnke-Stein, in order that a limit of Stein spaces be again a Stein space is proved.
LA - eng
UR - http://eudml.org/doc/74355
ER -

References

top
  1. [1] A. ANDREOTTI et H. GRAUERT, Théorèmes de finitude pour la cohomologie des espaces complexes, Bull. Soc. Math. France, 90 (1962), 193-260. Zbl0106.05501MR27 #343
  2. [2] A. ANDREOTTI et E. VESENTINI, Les Théorèmes fondamentaux de la théorie des espaces holomorphiquement complets, in Sem. Ehresmann, Paris, (1962). 
  3. [3] H. BEHNKE und K. STEIN, Konvergente Folgen von Regularitatsbereichen und die meromorphe Konvexitat, Math. Annalen, 116 (1939), 204-216. Zbl0020.37803JFM64.0322.03
  4. [4] A. CASSA, Coomologia separata sulle varieta analitiche complesse, Annali SNS Pisa, 25 (1971), 291-323. 
  5. [5] J. E. FORNAESS, An increasing sequence of Stein manifolds whose limit is not Stein, Math. Annalen, 223 (1976), 275-277. Zbl0334.32017MR54 #5498
  6. [6] A. GROTHENDIECK, Sur quelques points d'algèbre homologique, Tôhoku Math. Journal, II, 9 (1957), 119-183. Zbl0118.26104MR21 #1328
  7. [7] A. HIRSCHOWITZ, Pseudoconvexité au-dessus d'espaces plus ou moins homogènes, Inventiones Math., 26 (1974), 303-322. Zbl0275.32009MR50 #10323
  8. [8] Y. T. SIU, Non countable dimension of cohomology groups of analytic sheaves and domains of holomorphy, Math. Zeit., 102 (1967), 17-29. Zbl0167.06802MR36 #5394
  9. [9] F. TREVES, Locally convex spaces and linear partial differential equations, Springer, Berlin (1967). Zbl0152.32104MR36 #6986
  10. [10] V. VILLANI, Un teorema di passaggio al limite per la coomologia degli spazi complessi, Rend. Sc. fis. mat. e nat. Accad. Lincei, 43 (1967), 168-170. Zbl0157.40501MR37 #6487
  11. [11] J. WERMER, An example concerning polynomial convexity, Math. Annalen, 139 (1959), 147-150. Zbl0094.28302MR22 #12238
  12. [12] A. MARKOE, Runge families and inductive limits of Stein spaces, Ann. Inst. Fourier, 27 (1977), 117-128. Zbl0323.32014MR58 #28665
  13. [13] J.-P. RAMIS, G. RUGET et J. L. VERDIER, Dualité Relative en Géométrie Analytique Complexe, Inv. Math., 13 (1971), 261-283. Zbl0218.14010MR46 #7553
  14. [14] A. OGUS, Local cohomological dimension, Ann. of Math., 98 (1973), 327-365. Zbl0308.14003MR58 #22059

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.