Radon-Nikodym property for vector-valued integrable functions

Surjit Singh Khurana

Annales de l'institut Fourier (1978)

  • Volume: 28, Issue: 3, page 203-208
  • ISSN: 0373-0956

Abstract

top
It is proved that if a Frechet space E has R - N property, then L p ( E , ν ) also has R - N property, for 1 < p < .

How to cite

top

Khurana, Surjit Singh. "Radon-Nikodym property for vector-valued integrable functions." Annales de l'institut Fourier 28.3 (1978): 203-208. <http://eudml.org/doc/74371>.

@article{Khurana1978,
abstract = {It is proved that if a Frechet space $E$ has $R-N$ property, then $L_p(E,\nu )$ also has $R-N$ property, for $1&lt; p&lt; \infty $.},
author = {Khurana, Surjit Singh},
journal = {Annales de l'institut Fourier},
language = {eng},
number = {3},
pages = {203-208},
publisher = {Association des Annales de l'Institut Fourier},
title = {Radon-Nikodym property for vector-valued integrable functions},
url = {http://eudml.org/doc/74371},
volume = {28},
year = {1978},
}

TY - JOUR
AU - Khurana, Surjit Singh
TI - Radon-Nikodym property for vector-valued integrable functions
JO - Annales de l'institut Fourier
PY - 1978
PB - Association des Annales de l'Institut Fourier
VL - 28
IS - 3
SP - 203
EP - 208
AB - It is proved that if a Frechet space $E$ has $R-N$ property, then $L_p(E,\nu )$ also has $R-N$ property, for $1&lt; p&lt; \infty $.
LA - eng
UR - http://eudml.org/doc/74371
ER -

References

top
  1. [1] J. DIESTEL, J.J. UHL, Jr., The Radon-Nikodym property for Banach space valued measures, Rocky Mountain J. Math., 6 (1976), 1-46. Zbl0339.46031
  2. [2] L. DREWNOWSKI, Topological rings of sets, continuous set functions, integration I, II, III, Bull. Acad. Polon. Sci., Ser. Math. Astron. Phys., 20 (1972), 269-276, 277-286, 439-445. Zbl0249.28004
  3. [3] E. SAAB, Dentabilité, points extrémaux et propriété de Radon-Nikodym, Bull. Soc. Math., 99 (1975), 129-134. Zbl0325.46036
  4. [4] E. SAAB, Dentabilité, points extrémaux et propriété de Radon-Nikodym, C.R. Acad. Sci., Paris, 280 (1975), 575-577. Zbl0295.46068
  5. [5] H.H. SCHAEFER, Topological vector spaces, Macmillan, New York (1971). Zbl0217.16002MR49 #7722
  6. [6] K. SUNDARESAN, The Radon-Nikodym theorem for Lebesgue-Bochner function spaces, J. Func. Anal., 24 (1977), 276-279. Zbl0341.46019MR56 #9246
  7. [7] Ju. B. TUMARKIN, On locally convex spaces with basis, Doklady Acad. Sci. USSR, 195 (1970), 1278-1281, English Translation : Soviet Math., 11 (1970), 1672-1675. Zbl0216.40701
  8. [8] P. TURPIN, Convexité dans les espaces vectoriels topologiques généraux, Disser. Math., 131 (1976). Zbl0331.46001MR54 #11028

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.