Radon-Nikodym property for vector-valued integrable functions

Surjit Singh Khurana

Annales de l'institut Fourier (1978)

  • Volume: 28, Issue: 3, page 203-208
  • ISSN: 0373-0956

Abstract

top
It is proved that if a Frechet space E has R - N property, then L p ( E , ν ) also has R - N property, for 1 < p < .

How to cite

top

Khurana, Surjit Singh. "Radon-Nikodym property for vector-valued integrable functions." Annales de l'institut Fourier 28.3 (1978): 203-208. <http://eudml.org/doc/74371>.

@article{Khurana1978,
abstract = {It is proved that if a Frechet space $E$ has $R-N$ property, then $L_p(E,\nu )$ also has $R-N$ property, for $1&lt; p&lt; \infty $.},
author = {Khurana, Surjit Singh},
journal = {Annales de l'institut Fourier},
language = {eng},
number = {3},
pages = {203-208},
publisher = {Association des Annales de l'Institut Fourier},
title = {Radon-Nikodym property for vector-valued integrable functions},
url = {http://eudml.org/doc/74371},
volume = {28},
year = {1978},
}

TY - JOUR
AU - Khurana, Surjit Singh
TI - Radon-Nikodym property for vector-valued integrable functions
JO - Annales de l'institut Fourier
PY - 1978
PB - Association des Annales de l'Institut Fourier
VL - 28
IS - 3
SP - 203
EP - 208
AB - It is proved that if a Frechet space $E$ has $R-N$ property, then $L_p(E,\nu )$ also has $R-N$ property, for $1&lt; p&lt; \infty $.
LA - eng
UR - http://eudml.org/doc/74371
ER -

References

top
  1. [1] J. DIESTEL, J.J. UHL, Jr., The Radon-Nikodym property for Banach space valued measures, Rocky Mountain J. Math., 6 (1976), 1-46. Zbl0339.46031
  2. [2] L. DREWNOWSKI, Topological rings of sets, continuous set functions, integration I, II, III, Bull. Acad. Polon. Sci., Ser. Math. Astron. Phys., 20 (1972), 269-276, 277-286, 439-445. Zbl0249.28004
  3. [3] E. SAAB, Dentabilité, points extrémaux et propriété de Radon-Nikodym, Bull. Soc. Math., 99 (1975), 129-134. Zbl0325.46036
  4. [4] E. SAAB, Dentabilité, points extrémaux et propriété de Radon-Nikodym, C.R. Acad. Sci., Paris, 280 (1975), 575-577. Zbl0295.46068
  5. [5] H.H. SCHAEFER, Topological vector spaces, Macmillan, New York (1971). Zbl0217.16002MR49 #7722
  6. [6] K. SUNDARESAN, The Radon-Nikodym theorem for Lebesgue-Bochner function spaces, J. Func. Anal., 24 (1977), 276-279. Zbl0341.46019MR56 #9246
  7. [7] Ju. B. TUMARKIN, On locally convex spaces with basis, Doklady Acad. Sci. USSR, 195 (1970), 1278-1281, English Translation : Soviet Math., 11 (1970), 1672-1675. Zbl0216.40701
  8. [8] P. TURPIN, Convexité dans les espaces vectoriels topologiques généraux, Disser. Math., 131 (1976). Zbl0331.46001MR54 #11028

NotesEmbed ?

top

You must be logged in to post comments.