Harmonic interpolating sequences, and BMO
Annales de l'institut Fourier (1978)
- Volume: 28, Issue: 4, page 215-228
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topGarnett, John B.. "Harmonic interpolating sequences, $L^p$ and BMO." Annales de l'institut Fourier 28.4 (1978): 215-228. <http://eudml.org/doc/74382>.
@article{Garnett1978,
abstract = {Let $(z_\nu )$ be a sequence in the upper half plane. If $1< p\le \infty $ and if\begin\{\}y^\{1/p\}\_\nu f(z\_\nu ) = a\_\nu ,~\nu =1,2,\ldots \qquad (*)\end\{\}has solution $f(z)$ in the class of Poisson integrals of $L^p$ functions for any sequence $(a_\nu ) \in \ell ^p$, then we show that $(z_\nu )$ is an interpolating sequence for $H^\infty $. If $f(z_\nu ) = a_\nu $, $\nu =1,2,\ldots $ has solution in the class of Poisson integrals of BMO functions whenever $(a_\nu ) \in \ell ^\infty $, then $(z_\nu )$ is again an interpolating sequence for $H^\infty $. A somewhat more general theorem is also proved and a counterexample for the case $p\le 1$ is described.},
author = {Garnett, John B.},
journal = {Annales de l'institut Fourier},
language = {eng},
number = {4},
pages = {215-228},
publisher = {Association des Annales de l'Institut Fourier},
title = {Harmonic interpolating sequences, $L^p$ and BMO},
url = {http://eudml.org/doc/74382},
volume = {28},
year = {1978},
}
TY - JOUR
AU - Garnett, John B.
TI - Harmonic interpolating sequences, $L^p$ and BMO
JO - Annales de l'institut Fourier
PY - 1978
PB - Association des Annales de l'Institut Fourier
VL - 28
IS - 4
SP - 215
EP - 228
AB - Let $(z_\nu )$ be a sequence in the upper half plane. If $1< p\le \infty $ and if\begin{}y^{1/p}_\nu f(z_\nu ) = a_\nu ,~\nu =1,2,\ldots \qquad (*)\end{}has solution $f(z)$ in the class of Poisson integrals of $L^p$ functions for any sequence $(a_\nu ) \in \ell ^p$, then we show that $(z_\nu )$ is an interpolating sequence for $H^\infty $. If $f(z_\nu ) = a_\nu $, $\nu =1,2,\ldots $ has solution in the class of Poisson integrals of BMO functions whenever $(a_\nu ) \in \ell ^\infty $, then $(z_\nu )$ is again an interpolating sequence for $H^\infty $. A somewhat more general theorem is also proved and a counterexample for the case $p\le 1$ is described.
LA - eng
UR - http://eudml.org/doc/74382
ER -
References
top- [1] Eric AMAR, Interpolation Lp, to appear.
- [2] D. BURKHOLDER, R. GUNDY and M. SILVERSTEIN, A maximal function characterization of the class Hp, Trans. A.M.S., 157 (1971), 137-157. Zbl0223.30048MR43 #527
- [3] L. CARLESON, An interpolation problem for bounded analytic functions, Amer. J. Math., 80 (1958), 921-930. Zbl0085.06504MR22 #8129
- [4] L. CARLESON and J. GARNETT, Interpolating sequences and separation properties, Jour. d'Analyse Math., 28 (1975), 273-299. Zbl0347.30032
- [5] R. COIFMAN, R. ROCHBERG and G. WEISS, Factorization theorems for Hardy spaces in several variables, Ann. of Math., 103 (1976), 611-635. Zbl0326.32011MR54 #843
- [6] R. COIFMAN and G. WEISS, Extensions of Hardy spaces and their use in analysis, Bull. A.M.S., 83 (1977), 569-645. Zbl0358.30023MR56 #6264
- [7] P. R. DUREN, Theory of Hp Spaces, Academic Press, New York, 1970. Zbl0215.20203MR42 #3552
- [8] C. FEFFERMAN and E. STEIN, Hp spaces of several variables, Acta Math., 129 (1972), 137-193. Zbl0257.46078MR56 #6263
- [9] J. GARNETT, Interpolating sequences for bounded harmonic functions, Indiana U. Math. J., 21 (1971), 187-192. Zbl0236.30042MR44 #1814
- [10] L. HÖRMANDER, Lp estimates for (pluri-) subharmonic functions, Math. Scand., 20 (1967), 65-78. Zbl0156.12201
- [11] E. M. STEIN, Boundary Behavior of Holomorphic Functions of Several Complex Variables, Princeton University Press, Princeton, 1972. Zbl0242.32005MR57 #12890
- [12] E. M. STEIN, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, NJ, 1970. Zbl0207.13501MR44 #7280
- [13] N. VAROPOULOS, Sur un problème d'interpolation, C.R. Acad. Sci. Paris, Ser. A, 274 (1972), 1539-1542. Zbl0236.41001MR46 #2417
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.