Displaying similar documents to “Harmonic interpolating sequences, L p and BMO”

A note on rearrangements of Fourier coefficients

Hugh L. Montgomery (1976)

Annales de l'institut Fourier

Similarity:

Let f ( x ) Σ a n e 2 π i n x , f * ( x ) n = 0 a * n cos 2 π n x , where the a * n are the numbers | a n | rearranged so that a n * 0 . Then for any convex increasing ψ , ψ ( | f | 2 1 ψ ( 20 | f * | 2 1 . The special case ψ ( t ) = t q / 2 , q 2 , gives f q 5 f * q an equivalent of Littlewood.

Construction techniques for some thin sets in duals of compact abelian groups

D. J. Hajela (1986)

Annales de l'institut Fourier

Similarity:

Various techniques are presented for constructing Λ (p) sets which are not Λ ( p + ϵ ) for all ϵ > 0 . The main result is that there is a Λ (4) set in the dual of any compact abelian group which is not Λ ( 4 + ϵ ) for all ϵ > 0 . Along the way to proving this, new constructions are given in dual groups in which constructions were already known of Λ (p) not Λ ( p + ϵ ) sets, for certain values of p . The main new constructions in specific dual groups are: – there is a Λ (2k) set which is not Λ ( 2 k + ϵ ) in Z ( 2 ) Z ( 2 ) for all 2 k , k N and...

Complexity of Hartman sequences

Christian Steineder, Reinhard Winkler (2005)

Journal de Théorie des Nombres de Bordeaux

Similarity:

Let T : x x + g be an ergodic translation on the compact group C and M C a continuity set, i.e. a subset with topological boundary of Haar measure 0. An infinite binary sequence a : { 0 , 1 } defined by a ( k ) = 1 if T k ( 0 C ) M and a ( k ) = 0 otherwise, is called a Hartman sequence. This paper studies the growth rate of P a ( n ) , where P a ( n ) denotes the number of binary words of length n occurring in a . The growth rate is always subexponential and this result is optimal. If T is an ergodic translation x x + α ( α = ( α 1 , ... , α s ) ) on 𝕋 s and M is a box with...

Oscillation conditions for difference equations with several variable arguments

George E. Chatzarakis, Takaŝi Kusano, Ioannis P. Stavroulakis (2015)

Mathematica Bohemica

Similarity:

Consider the difference equation Δ x ( n ) + i = 1 m p i ( n ) x ( τ i ( n ) ) = 0 , n 0 x ( n ) - i = 1 m p i ( n ) x ( σ i ( n ) ) = 0 , n 1 , where ( p i ( n ) ) , 1 i m are sequences of nonnegative real numbers, τ i ( n ) [ σ i ( n ) ], 1 i m are general retarded (advanced) arguments and Δ [ ] denotes the forward (backward) difference operator Δ x ( n ) = x ( n + 1 ) - x ( n ) [ x ( n ) = x ( n ) - x ( n - 1 ) ]. New oscillation criteria are established when the well-known oscillation conditions lim sup n i = 1 m j = τ ( n ) n p i ( j ) > 1 lim sup n i = 1 m j = n σ ( n ) p i ( j ) > 1 and lim inf n i = 1 m j = τ i ( n ) n - 1 p i ( j ) > 1 e lim inf n i = 1 m j = n + 1 σ i ( n ) p i ( j ) > 1 e are not satisfied. Here τ ( n ) = max 1 i m τ i ( n ) [ σ ( n ) = min 1 i m σ i ( n ) ] . The results obtained essentially improve known results in the literature. Examples illustrating the results are also given.