Ordre de grandeur de L ( 1 , χ ) et de L ' ( 1 , χ )

Jean-René Joly; Claude Moser

Annales de l'institut Fourier (1979)

  • Volume: 29, Issue: 1, page 125-135
  • ISSN: 0373-0956

Abstract

top
The paper gives a rough description of the distribution of values of L ' ( 1 , χ ) ( χ , a real primitive residue character), which usually lie under π 2 / 6 ; and a proof of the following theorem: if L ' ( 1 , χ ) < ( π 2 / 6 ) - ϵ , then L ( 1 , χ ) > c ( ϵ ) / log k ( k the conductor of χ ; c ( ϵ ) , a positive, computable constant.

How to cite

top

Joly, Jean-René, and Moser, Claude. "Ordre de grandeur de $L(1,\chi )$ et de $L^{\prime }(1,\chi )$." Annales de l'institut Fourier 29.1 (1979): 125-135. <http://eudml.org/doc/74390>.

@article{Joly1979,
abstract = {On étudie sommairement la distribution des valeurs de $L^\{\prime \}(1,\chi )$ ($\chi $ : caractère de Dirichlet primitif réel) et on constate qu’on a en général $L^\{\prime \}(1,\chi ) &lt; \pi ^2/6$; on démontre par ailleurs que si $L^\{\prime \}(1,\chi ) &lt; (\pi ^2/6) - \varepsilon $, alors$L(1,\chi ) &gt; c(\varepsilon ) / \log k$ ($k$ : conducteur de $\chi $; $c(\varepsilon )$: constante positive effectivement calculable.},
author = {Joly, Jean-René, Moser, Claude},
journal = {Annales de l'institut Fourier},
keywords = {distribution of values},
language = {fre},
number = {1},
pages = {125-135},
publisher = {Association des Annales de l'Institut Fourier},
title = {Ordre de grandeur de $L(1,\chi )$ et de $L^\{\prime \}(1,\chi )$},
url = {http://eudml.org/doc/74390},
volume = {29},
year = {1979},
}

TY - JOUR
AU - Joly, Jean-René
AU - Moser, Claude
TI - Ordre de grandeur de $L(1,\chi )$ et de $L^{\prime }(1,\chi )$
JO - Annales de l'institut Fourier
PY - 1979
PB - Association des Annales de l'Institut Fourier
VL - 29
IS - 1
SP - 125
EP - 135
AB - On étudie sommairement la distribution des valeurs de $L^{\prime }(1,\chi )$ ($\chi $ : caractère de Dirichlet primitif réel) et on constate qu’on a en général $L^{\prime }(1,\chi ) &lt; \pi ^2/6$; on démontre par ailleurs que si $L^{\prime }(1,\chi ) &lt; (\pi ^2/6) - \varepsilon $, alors$L(1,\chi ) &gt; c(\varepsilon ) / \log k$ ($k$ : conducteur de $\chi $; $c(\varepsilon )$: constante positive effectivement calculable.
LA - fre
KW - distribution of values
UR - http://eudml.org/doc/74390
ER -

References

top
  1. [1] S. CHOWLA, Improvement of a result of Linnik and Walfisz, Proc. London Math. Soc., 50 (1949), 423-429. Zbl0032.11006MR10,285d
  2. [2] S. CHOWLA, On the class number of the corpus P(√—k), Proc. Nat. Inst. Sc. India, 13 (1947), 197-200. 
  3. [3] H. DAVENPORT, Multiplicative number theory, Markham, Chicago (1967). Zbl0159.06303MR36 #117
  4. [4] P.D.T.A. ELLIOTT, On the size of L(1,χ), J. reine angew Math., 236 (1969), 26-36. Zbl0175.04302MR40 #2619
  5. [5] W. FLUCH, Zur Abschätzung von L(1,χ), Nachr. Akad. Wiss. Göttingen Math. Phys., (1964), 101-102. Zbl0121.28401MR29 #4741
  6. [6] J.R. JOLY, Suites périodiques et inégalité de Polya, Bull. Sc. Math., 102 (1978), 3-13. Zbl0384.10019MR58 #5545
  7. [7] P.T. JOSHI, The size of L(1,χ) for real characters χ with prime modulus, J. Number Theory, 2 (1970), 58-73. Zbl0208.31103MR40 #4215
  8. [8] J. PINTZ, Elementary methods in the theory of L-functions, II, Acta Arithm., 31 (1976), 273-289. Zbl0307.10041MR56 #2936
  9. [9] J.E. LITTLEWOOD, On the class number of the corpus P(√—k), Proc. London Math. Soc., 28 (1927), 358-372. Zbl54.0206.02JFM54.0206.02
  10. [10] C. MOSER, Distribution des valeurs de L'(1,χ), Sém. Th. Nombres, Grenoble. 
  11. [11] D. SHANKS, Littlewood bounds, Proc. Symp. Pure Math. A.M.S., Analytic Number Theory, XXIV (1973). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.