On group representations whose algebra is an ideal in its von Neumann algebra
Annales de l'institut Fourier (1979)
- Volume: 29, Issue: 4, page 37-52
 - ISSN: 0373-0956
 
Access Full Article
topAbstract
topHow to cite
topGranirer, Edmond E.. "On group representations whose $C^*$ algebra is an ideal in its von Neumann algebra." Annales de l'institut Fourier 29.4 (1979): 37-52. <http://eudml.org/doc/74432>.
@article{Granirer1979,
	abstract = {Let $\tau $ be a continuous unitary representation of the locally compact group $G$ on the Hilbert space $H_\tau $. Let $C^*_\tau [VN_\tau ]$ be the $C^*[W^*]$ algebra generated by\begin\{\}(L^1(G))  \text\{and\}  M\_\tau (C^*\_\tau ) = \big \lbrace \varphi \in VN\_\tau ;~\varphi C^*\_\tau + C^*\_\tau \varphi \subset C^*\_\tau \big \rbrace .\end\{\}The main result obtained in this paper is Theorem 1:If $G$ is $\sigma $-compact and $M_\tau (C^*_\tau )=VN_\tau $ then supp $\tau $ is discrete and each $\pi $ in supp $\tau $ in CCR.We apply this theorem to the quasiregular representation $\tau =\pi _H$ and obtain among other results that $M_\{\pi _H\}(C^*_\{\pi _H\})=VN_\{\pi _H\}$ implies in many cases that $G/H$ is a compact coset space.},
	author = {Granirer, Edmond E.},
	journal = {Annales de l'institut Fourier},
	keywords = {Unitary Representation; Locally Compact Group; Hilbert Space; Compact Coset Space},
	language = {eng},
	number = {4},
	pages = {37-52},
	publisher = {Association des Annales de l'Institut Fourier},
	title = {On group representations whose $C^*$ algebra is an ideal in its von Neumann algebra},
	url = {http://eudml.org/doc/74432},
	volume = {29},
	year = {1979},
}
TY  - JOUR
AU  - Granirer, Edmond E.
TI  - On group representations whose $C^*$ algebra is an ideal in its von Neumann algebra
JO  - Annales de l'institut Fourier
PY  - 1979
PB  - Association des Annales de l'Institut Fourier
VL  - 29
IS  - 4
SP  - 37
EP  - 52
AB  - Let $\tau $ be a continuous unitary representation of the locally compact group $G$ on the Hilbert space $H_\tau $. Let $C^*_\tau [VN_\tau ]$ be the $C^*[W^*]$ algebra generated by\begin{}(L^1(G))  \text{and}  M_\tau (C^*_\tau ) = \big \lbrace \varphi \in VN_\tau ;~\varphi C^*_\tau + C^*_\tau \varphi \subset C^*_\tau \big \rbrace .\end{}The main result obtained in this paper is Theorem 1:If $G$ is $\sigma $-compact and $M_\tau (C^*_\tau )=VN_\tau $ then supp $\tau $ is discrete and each $\pi $ in supp $\tau $ in CCR.We apply this theorem to the quasiregular representation $\tau =\pi _H$ and obtain among other results that $M_{\pi _H}(C^*_{\pi _H})=VN_{\pi _H}$ implies in many cases that $G/H$ is a compact coset space.
LA  - eng
KW  - Unitary Representation; Locally Compact Group; Hilbert Space; Compact Coset Space
UR  - http://eudml.org/doc/74432
ER  - 
References
top- [1] C. A. AKEMAN, G. K. PEDERSEN, J. TOMIYAMA, Multipliers of C*-Algebras, J. of Functional Analysis, 13 (1973), 277-301. Zbl0258.46052MR57 #10431
 - [2] C. A. AKEMAN, M. E. WALTER, Nonabelian Pontriagin duality, Duke Math. J., 39 (1972), 451-463. Zbl0243.43005
 - [3] G. ARSAC, Sur l'espace de Banach engendré par les coefficients d'une représentation unitaire, Thèse, Université Claude-Bernard, Lyon I, 1973.
 - [4] M. C. F. BERGLUND, Ideal C*-algebras, Duke Math. J., 40 (1973), 241-257. Zbl0265.46055MR48 #881
 - [5] R. B. BURCKEL, Weakly almost periodic functions on semigroups, Gordon and Breach, 1970. Zbl0192.48602MR41 #8562
 - [6] J. DIXMIER, Les C*-algèbres et leurs représentations, Gauthier-Villars, Paris, 2e edition, 1969. Zbl0174.18601
 - [7] P. EYMARD, l'algèbre de Fourier d'un groupe localement compact, Bull. Soc. Math. France, 92 (1964), 181-236. Zbl0169.46403MR37 #4208
 - [8] P. EYMARD, Moyennes Invariantes et Représentations Unitaires, Lecture notes in mathematics, Springer Verlag, 1972, n° 300. Zbl0249.43004MR56 #6279
 - [9] Steven A. GAAL, Linear Analysis and Representation Theory, Springer Verlag, 1973. Zbl0275.43008
 - [10] E. GRANIRER, Density theorems for some linear subspaces and some C*-subalgebras of VN(G), Proc. of Symp. on Harmonic Analysis and Function Spaces, Inst. Nazionale di Alta Matematica Rome March 1976, pp. 61-70. Zbl0382.43003MR58 #6935
 - [11] G. D. MOSTOW, Homogeneous spaces with finite invariant measure, Annals of Math., 75 (1962), 17-37. Zbl0115.25702MR26 #2546
 - [12] G. D. MOSTOW, Factor spaces of solvable groups, Ann. of Math., 60 (1954), 1-27. Zbl0057.26103MR15,853g
 - [13] S. SAKAI, On topological properties of W*-algebras, Proc. Japan Acad., 33 (1957), 439-444. Zbl0081.11103MR20 #5437
 - [14] I. SCHOCHETMAN, Topology and the duals of certain locally compact groups, Trans. AMS, 150 (1970), 477-489. Zbl0204.44001MR42 #422
 - [15] M. E. WALTER, W*-algebras and nonabelian harmonic analysis, J. of Functional Analysis, 11 (1972), 17-38. Zbl0242.22010MR50 #5365
 - [16] S. P. WANG, On S-subgroups of solvable Lie groups, Amer. J. Math., 92 (1970), 389-397. Zbl0223.22015MR41 #8581
 - [17] S. P. WANG, On isolated points in the dual spaces of locally compact groups, Math. Annalen, 218 (1975), 19-34. Zbl0332.22009MR52 #5863
 - [18] S. P. WANG, Compactness properties of topological groups III, Trans AMS, 209 (1975), 399-418. Zbl0322.22005MR51 #10529
 - [19] S. P. WANG, Homogeneous spaces with invariant measure, Amer. J. Math., 98 (1976), 311-324. Zbl0338.43015MR56 #5789
 - [20] L. BAGGETT, A separable group having a discrete dual space is compact, J. Functional Analysis, 10 (1972), 131-148. Zbl0252.22012MR49 #10816
 - [21] J. M. G. FELL, A new look at Mackey's imprimitivity theorem, Proc. Conference on Harmonic Analysis Maryland 1971, Springer Lecture Notes, Vol. 266, 42-58. Zbl0234.43008
 - [22] G.W. MACKEY, Induced representations of locally compact groups I, Annals of Math., 55 (1952), 101-139. Zbl0046.11601MR13,434a
 
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.