On group representations whose C * algebra is an ideal in its von Neumann algebra

Edmond E. Granirer

Annales de l'institut Fourier (1979)

  • Volume: 29, Issue: 4, page 37-52
  • ISSN: 0373-0956

Abstract

top
Let τ be a continuous unitary representation of the locally compact group G on the Hilbert space H τ . Let C τ * [ V N τ ] be the C * [ W * ] algebra generated by ( L 1 ( G ) ) and M τ ( C τ * ) = φ V N τ ; φ C τ * + C τ * φ C τ * . The main result obtained in this paper is Theorem 1:If G is σ -compact and M τ ( C τ * ) = V N τ then supp τ is discrete and each π in supp τ in CCR.We apply this theorem to the quasiregular representation τ = π H and obtain among other results that M π H ( C π H * ) = V N π H implies in many cases that G / H is a compact coset space.

How to cite

top

Granirer, Edmond E.. "On group representations whose $C^*$ algebra is an ideal in its von Neumann algebra." Annales de l'institut Fourier 29.4 (1979): 37-52. <http://eudml.org/doc/74432>.

@article{Granirer1979,
abstract = {Let $\tau $ be a continuous unitary representation of the locally compact group $G$ on the Hilbert space $H_\tau $. Let $C^*_\tau [VN_\tau ]$ be the $C^*[W^*]$ algebra generated by\begin\{\}(L^1(G)) \text\{and\} M\_\tau (C^*\_\tau ) = \big \lbrace \varphi \in VN\_\tau ;~\varphi C^*\_\tau + C^*\_\tau \varphi \subset C^*\_\tau \big \rbrace .\end\{\}The main result obtained in this paper is Theorem 1:If $G$ is $\sigma $-compact and $M_\tau (C^*_\tau )=VN_\tau $ then supp $\tau $ is discrete and each $\pi $ in supp $\tau $ in CCR.We apply this theorem to the quasiregular representation $\tau =\pi _H$ and obtain among other results that $M_\{\pi _H\}(C^*_\{\pi _H\})=VN_\{\pi _H\}$ implies in many cases that $G/H$ is a compact coset space.},
author = {Granirer, Edmond E.},
journal = {Annales de l'institut Fourier},
keywords = {Unitary Representation; Locally Compact Group; Hilbert Space; Compact Coset Space},
language = {eng},
number = {4},
pages = {37-52},
publisher = {Association des Annales de l'Institut Fourier},
title = {On group representations whose $C^*$ algebra is an ideal in its von Neumann algebra},
url = {http://eudml.org/doc/74432},
volume = {29},
year = {1979},
}

TY - JOUR
AU - Granirer, Edmond E.
TI - On group representations whose $C^*$ algebra is an ideal in its von Neumann algebra
JO - Annales de l'institut Fourier
PY - 1979
PB - Association des Annales de l'Institut Fourier
VL - 29
IS - 4
SP - 37
EP - 52
AB - Let $\tau $ be a continuous unitary representation of the locally compact group $G$ on the Hilbert space $H_\tau $. Let $C^*_\tau [VN_\tau ]$ be the $C^*[W^*]$ algebra generated by\begin{}(L^1(G)) \text{and} M_\tau (C^*_\tau ) = \big \lbrace \varphi \in VN_\tau ;~\varphi C^*_\tau + C^*_\tau \varphi \subset C^*_\tau \big \rbrace .\end{}The main result obtained in this paper is Theorem 1:If $G$ is $\sigma $-compact and $M_\tau (C^*_\tau )=VN_\tau $ then supp $\tau $ is discrete and each $\pi $ in supp $\tau $ in CCR.We apply this theorem to the quasiregular representation $\tau =\pi _H$ and obtain among other results that $M_{\pi _H}(C^*_{\pi _H})=VN_{\pi _H}$ implies in many cases that $G/H$ is a compact coset space.
LA - eng
KW - Unitary Representation; Locally Compact Group; Hilbert Space; Compact Coset Space
UR - http://eudml.org/doc/74432
ER -

References

top
  1. [1] C. A. AKEMAN, G. K. PEDERSEN, J. TOMIYAMA, Multipliers of C*-Algebras, J. of Functional Analysis, 13 (1973), 277-301. Zbl0258.46052MR57 #10431
  2. [2] C. A. AKEMAN, M. E. WALTER, Nonabelian Pontriagin duality, Duke Math. J., 39 (1972), 451-463. Zbl0243.43005
  3. [3] G. ARSAC, Sur l'espace de Banach engendré par les coefficients d'une représentation unitaire, Thèse, Université Claude-Bernard, Lyon I, 1973. 
  4. [4] M. C. F. BERGLUND, Ideal C*-algebras, Duke Math. J., 40 (1973), 241-257. Zbl0265.46055MR48 #881
  5. [5] R. B. BURCKEL, Weakly almost periodic functions on semigroups, Gordon and Breach, 1970. Zbl0192.48602MR41 #8562
  6. [6] J. DIXMIER, Les C*-algèbres et leurs représentations, Gauthier-Villars, Paris, 2e edition, 1969. Zbl0174.18601
  7. [7] P. EYMARD, l'algèbre de Fourier d'un groupe localement compact, Bull. Soc. Math. France, 92 (1964), 181-236. Zbl0169.46403MR37 #4208
  8. [8] P. EYMARD, Moyennes Invariantes et Représentations Unitaires, Lecture notes in mathematics, Springer Verlag, 1972, n° 300. Zbl0249.43004MR56 #6279
  9. [9] Steven A. GAAL, Linear Analysis and Representation Theory, Springer Verlag, 1973. Zbl0275.43008
  10. [10] E. GRANIRER, Density theorems for some linear subspaces and some C*-subalgebras of VN(G), Proc. of Symp. on Harmonic Analysis and Function Spaces, Inst. Nazionale di Alta Matematica Rome March 1976, pp. 61-70. Zbl0382.43003MR58 #6935
  11. [11] G. D. MOSTOW, Homogeneous spaces with finite invariant measure, Annals of Math., 75 (1962), 17-37. Zbl0115.25702MR26 #2546
  12. [12] G. D. MOSTOW, Factor spaces of solvable groups, Ann. of Math., 60 (1954), 1-27. Zbl0057.26103MR15,853g
  13. [13] S. SAKAI, On topological properties of W*-algebras, Proc. Japan Acad., 33 (1957), 439-444. Zbl0081.11103MR20 #5437
  14. [14] I. SCHOCHETMAN, Topology and the duals of certain locally compact groups, Trans. AMS, 150 (1970), 477-489. Zbl0204.44001MR42 #422
  15. [15] M. E. WALTER, W*-algebras and nonabelian harmonic analysis, J. of Functional Analysis, 11 (1972), 17-38. Zbl0242.22010MR50 #5365
  16. [16] S. P. WANG, On S-subgroups of solvable Lie groups, Amer. J. Math., 92 (1970), 389-397. Zbl0223.22015MR41 #8581
  17. [17] S. P. WANG, On isolated points in the dual spaces of locally compact groups, Math. Annalen, 218 (1975), 19-34. Zbl0332.22009MR52 #5863
  18. [18] S. P. WANG, Compactness properties of topological groups III, Trans AMS, 209 (1975), 399-418. Zbl0322.22005MR51 #10529
  19. [19] S. P. WANG, Homogeneous spaces with invariant measure, Amer. J. Math., 98 (1976), 311-324. Zbl0338.43015MR56 #5789
  20. [20] L. BAGGETT, A separable group having a discrete dual space is compact, J. Functional Analysis, 10 (1972), 131-148. Zbl0252.22012MR49 #10816
  21. [21] J. M. G. FELL, A new look at Mackey's imprimitivity theorem, Proc. Conference on Harmonic Analysis Maryland 1971, Springer Lecture Notes, Vol. 266, 42-58. Zbl0234.43008
  22. [22] G.W. MACKEY, Induced representations of locally compact groups I, Annals of Math., 55 (1952), 101-139. Zbl0046.11601MR13,434a

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.