A new setting for potential theory. I
Annales de l'institut Fourier (1980)
- Volume: 30, Issue: 3, page 167-198
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topChung, Kai Lai, and Rao, K. Murali. "A new setting for potential theory. I." Annales de l'institut Fourier 30.3 (1980): 167-198. <http://eudml.org/doc/74458>.
@article{Chung1980,
abstract = {We consider a transient Hunt process in which the potential density $u$ satisfies the conditions: (a) for each $x$, $u(x,y)^\{-1\}$ is finite continuous in $y$; (b) $u(x,y)=+\infty $ iff $x=y$. In earlier papers Chung established an equilibrium principle, and Rao obtained a Riesz of decomposition for excessive functions. We now begin a deeper study under these conditions, including the uniqueness of the decomposition and Hunt’s hypothesis (B).},
author = {Chung, Kai Lai, Rao, K. Murali},
journal = {Annales de l'institut Fourier},
keywords = {new setting for potential theory; transient Hunt process; potential density; equilibrium principle; decomposition; uniqueness},
language = {eng},
number = {3},
pages = {167-198},
publisher = {Association des Annales de l'Institut Fourier},
title = {A new setting for potential theory. I},
url = {http://eudml.org/doc/74458},
volume = {30},
year = {1980},
}
TY - JOUR
AU - Chung, Kai Lai
AU - Rao, K. Murali
TI - A new setting for potential theory. I
JO - Annales de l'institut Fourier
PY - 1980
PB - Association des Annales de l'Institut Fourier
VL - 30
IS - 3
SP - 167
EP - 198
AB - We consider a transient Hunt process in which the potential density $u$ satisfies the conditions: (a) for each $x$, $u(x,y)^{-1}$ is finite continuous in $y$; (b) $u(x,y)=+\infty $ iff $x=y$. In earlier papers Chung established an equilibrium principle, and Rao obtained a Riesz of decomposition for excessive functions. We now begin a deeper study under these conditions, including the uniqueness of the decomposition and Hunt’s hypothesis (B).
LA - eng
KW - new setting for potential theory; transient Hunt process; potential density; equilibrium principle; decomposition; uniqueness
UR - http://eudml.org/doc/74458
ER -
References
top- [1] R.M. BLUMENTHAL and R.K. GETOOR, Markov Processes and Potential Theory, Academic Press, 1968. Zbl0169.49204MR41 #9348
- [2] K.L. CHUNG, Probabilistic approach in potential theory to the equilibrium problem, Ann. Inst. Fourier, 23, 3 (1973), 313-322. Zbl0258.31012MR52 #12098
- [3] G.A. HUNT, Markoff processes and potentials I, Illinois J. Math., 1 (1957), 43-93. Zbl0100.13804MR19,951g
- [4] P.A. MEYER, Probabilités et potentiel, Hermann, 1966. Zbl0138.10402MR34 #5118
- [5] P.A. MEYER, Processus de Markov : la frontière de Martin, Lecture Notes in Mathematics No. 77, Springer-Verlag, (1968). Zbl0174.49303MR39 #7669
- [6] P.A. MEYER, Deux petits résultats de théorie du potentiel, Séminaire de Probabilités V, Lecture Notes in Mathematics No. 191, Springer-Verlag (1971), 211-212.
- [7] P.A. MEYER, Le Retournement du temps, d'après Chung et Walsh, Séminaire de Probabilités V, Lecture Notes in Mathematics No. 191, Springer-Verlag (1971), 213-236.
- [8] G. MOKOBODZKI, Densité relative de deux potentiels comparables, Séminaire de Probabilités IV, Lecture Notes in Mathematics No. 124, Springer-Verlag (1970), 170-194. Zbl0218.31014MR45 #3747
- [9] K.M. RAO, Excessive functions as potentials of measures, J. London Math. Soc., 16 (1977), 165-171. Zbl0369.31007MR57 #10833
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.