Sur la cohomologie de l'algèbre de Lie des champs de vecteurs de contact formels

Claude Roger

Annales de l'institut Fourier (1980)

  • Volume: 30, Issue: 3, page 249-257
  • ISSN: 0373-0956

Abstract

top
We prove the finiteness of the cohomology of the Lie algebra of formal vector fields in 2 n + 1 variables, respecting the universal contact form w = d x 0 + i = 1 n x i d x i .

How to cite

top

Roger, Claude. "Sur la cohomologie de l'algèbre de Lie des champs de vecteurs de contact formels." Annales de l'institut Fourier 30.3 (1980): 249-257. <http://eudml.org/doc/74463>.

@article{Roger1980,
abstract = {Nous démontrons la finitude de la cohomologie de l’algèbre de Lie des champs de vecteurs formels à $2n+1$ variables, respectant la forme de contact universelle $w=dx_0+\sum ^n_\{i=1\}x_id\bar\{x\}_i$.},
author = {Roger, Claude},
journal = {Annales de l'institut Fourier},
keywords = {cohomology of vector fields; Gelfand-Fuks cohomology of formal contact- vectorfields},
language = {fre},
number = {3},
pages = {249-257},
publisher = {Association des Annales de l'Institut Fourier},
title = {Sur la cohomologie de l'algèbre de Lie des champs de vecteurs de contact formels},
url = {http://eudml.org/doc/74463},
volume = {30},
year = {1980},
}

TY - JOUR
AU - Roger, Claude
TI - Sur la cohomologie de l'algèbre de Lie des champs de vecteurs de contact formels
JO - Annales de l'institut Fourier
PY - 1980
PB - Association des Annales de l'Institut Fourier
VL - 30
IS - 3
SP - 249
EP - 257
AB - Nous démontrons la finitude de la cohomologie de l’algèbre de Lie des champs de vecteurs formels à $2n+1$ variables, respectant la forme de contact universelle $w=dx_0+\sum ^n_{i=1}x_id\bar{x}_i$.
LA - fre
KW - cohomology of vector fields; Gelfand-Fuks cohomology of formal contact- vectorfields
UR - http://eudml.org/doc/74463
ER -

References

top
  1. [1] M. CHAPERON, Singularités en géométrie de contact, Astérisque, 59-60 (1978). Zbl0406.53034MR80k:58103
  2. [2] I.M. GELFAND, The Cohomology of infinite dimensional Lie algebras. Some questions of integral geometry, Actes du Congrès international des mathématiciens, Nice, 1970. 
  3. [3] I.M. GELFAND et B.A. FUKS, The Cohomology of the Lie algebra of formal vector fields, Izv. Akad. Nauk SSSR, 34 (1970), 322-337. Zbl0216.20302
  4. [4] I.M. GELFAND et B.A. FUKS, Upper bounds for cohomology of infinite dimensional Lie algebras, Functional analysis and its applications, vol. 4, n° 4, 1970. Zbl0224.18013MR44 #4792
  5. [5] C. GODBILLON, Cohomologies d'algèbres de Lie de champs de vecteurs, Séminaire Bourbaki 421, 1972. Zbl0296.17010
  6. [6] V. GUILLEMIN, D.G. QUILLEN, S. STERNBERG, The Classification of the irreducible complex algebras of infinite type, J. Analyse Math., t. 18 (1967), 107-112. Zbl0153.05903MR36 #221
  7. [7] S. KOBAYASHI, Transformation groups in differential geometry, Ergebnisse der Mathematik une ihrer Grenzgebiete, Band 70 (1972). Zbl0246.53031MR50 #8360
  8. [8] F. KAMBER et P. TONDEUR, Foliated bundles and characteristic classes, Lecture notes in math., 493 (1975). Zbl0308.57011MR53 #6587
  9. [9] A. LICHNEROWICZ, Cohomologie 1-différentiable des algèbres de Lie attachées à une variété symplectique ou de contact, J. Math. Pures et Appl., t. 53 (1974), 459-484. Zbl0317.53038MR51 #4315
  10. [10] M.V. LOZIK, On the Cohomologies of infinite dimensional Lie algebras of vector fields, Functional analysis and its applications, vol. 4, n° 2 (1970), 127. Zbl0212.28002
  11. [11] J. MORIMOTO et T. TANAKA, The Classification of real primitive infinite Lie algebras, Journal Math. Kyoto, (1970), 207-243. Zbl0211.05401MR42 #3133
  12. [12] J. PERCHIK, Cohomology of hamiltonian and related formal vector field Lie algebras, Topology. Zbl0343.58004
  13. [13] B.I. ROZENFELD, One dimensional cohomologies of a Lie algebra of contact vector fields, Functional analysis and its applications, vol. 4, n° 3 (1970), 171. Zbl0216.45601MR43 #4058
  14. [14] J. VEY, Rapport sur les champs symplectiques formels, Publ. Dépt. Math. Université de Lyon I, t. 13, fasc. 3 (1976). Zbl0373.57012MR57 #7619

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.