Sur l'algèbre de Lie des sections d'un fibré en algèbres de Lie

Pierre Lecomte

Annales de l'institut Fourier (1980)

  • Volume: 30, Issue: 4, page 35-50
  • ISSN: 0373-0956

Abstract

top
One studies the natural Lie algebra structure of the space of sections of class C k of a locally trivial fibre bundle whose typical fibre is a Lie algebra L ; in particular, its derivations and its automorphisms are described. The algebras L for which this structure characterizes the differentiable structure of the base manifold of the bundle are determined.

How to cite

top

Lecomte, Pierre. "Sur l'algèbre de Lie des sections d'un fibré en algèbres de Lie." Annales de l'institut Fourier 30.4 (1980): 35-50. <http://eudml.org/doc/74473>.

@article{Lecomte1980,
abstract = {On étudie la structure naturelle d’algèbre de Lie de l’espace des sections de classe $C_k$ d’un fibré localement trivial dont la fibre-type est une algèbre de Lie $L$; on décrit, en particulier, ses dérivations et ses automorphismes. On détermine les algèbres de Lie $L$ pour lesquelles cette structure caractérise la structure différentiable de la base du fibré.},
author = {Lecomte, Pierre},
journal = {Annales de l'institut Fourier},
keywords = {Lie algebra structure of the space of sections of a locally trivial fibre bundle whose typical fibre is a Lie algebra; differentiable structure},
language = {fre},
number = {4},
pages = {35-50},
publisher = {Association des Annales de l'Institut Fourier},
title = {Sur l'algèbre de Lie des sections d'un fibré en algèbres de Lie},
url = {http://eudml.org/doc/74473},
volume = {30},
year = {1980},
}

TY - JOUR
AU - Lecomte, Pierre
TI - Sur l'algèbre de Lie des sections d'un fibré en algèbres de Lie
JO - Annales de l'institut Fourier
PY - 1980
PB - Association des Annales de l'Institut Fourier
VL - 30
IS - 4
SP - 35
EP - 50
AB - On étudie la structure naturelle d’algèbre de Lie de l’espace des sections de classe $C_k$ d’un fibré localement trivial dont la fibre-type est une algèbre de Lie $L$; on décrit, en particulier, ses dérivations et ses automorphismes. On détermine les algèbres de Lie $L$ pour lesquelles cette structure caractérise la structure différentiable de la base du fibré.
LA - fre
KW - Lie algebra structure of the space of sections of a locally trivial fibre bundle whose typical fibre is a Lie algebra; differentiable structure
UR - http://eudml.org/doc/74473
ER -

References

top
  1. [1] I. AMEMIYA, Lie algebra of vector fields and complex structure, J. of Math. Soc. Japan, vol. 27, n° 4 (oct. 1975), 545. Zbl0311.57012MR53 #4087
  2. [2] A. A. KIRILLOV, Local Lie algebras, Russian Math. Surveys, 31, 4 (1976), 55. Zbl0357.58003MR55 #11304a
  3. [3] S. KOBAYASKI, K. NOMIZU, Foundations of Differential Geometry, Interscience Publishers, 15, vol. 1, New York, 1963. Zbl0119.37502
  4. [4] A. KORIYAMA, On Lie algebras of vector fields with invariant submanifolds, Nagoya Math. J., vol. 55 (1974), 91. Zbl0273.22016MR51 #6874
  5. [5] P. LECOMTE, Algèbres de Lie d'ordre zéro sur une variété, Thèse de doctorat, Liège, 1979. 
  6. [6] P. LECOMTE, On a class of local Lie algebras over a manifold, A paraître dans Letters in Mathematical Physics. Zbl0414.58001
  7. [7] P. LECOMTE, Derivations of linear endomorphisms of the tangent bundle, Bull. Soc. Roy. Sc. Liège, 47e année, 11-12 (1978), 329. Zbl0411.58002MR80i:58008
  8. [8] P. LECOMTE, On some ideals of a Lie algebra of order zero, A paraître dans Bull. Soc. Roy. Sc. Liège. Zbl0442.17006
  9. [9] R. NARASIMHAN, Analysis on Real and Complex Manifolds, Masson et Cie, Paris, 1973. 
  10. [10] H. OMORI, Infinite dimensional Lie transformation group, Lecture Notes in Mathematics, 427, Springer-Verlag, 1976. Zbl0328.58005
  11. [11] L. E. PURSELL, M. E. SHANKS, The Lie algebra of a smooth manifold, Proc. Amer. Math. Soc., vol. 5 (1954), 468. Zbl0055.42105MR16,331a

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.