Characteristic classes of subfoliations

Luis A. Cordero; X. Masa

Annales de l'institut Fourier (1981)

  • Volume: 31, Issue: 2, page 61-86
  • ISSN: 0373-0956

Abstract

top
This paper is devoted to define a characteristic homomorphism for a subfoliation ( F 1 , F 2 ) and to study its relation with the usual characteristic homomorphism for each foliation (as defined by Bott). Moreover, two applications are given: 1) the Yamato’s 2-codimensional foliation is shown to be no homotopic to F 2 in a (1,2)-codimensional subfoliation; 2) an obstruction to the existence of d everywhere independent and transverse infinitesimal transformations of a foliation F 2 is obtained, when F 2 and these transformations generated a new foliation F 1 .

How to cite

top

Cordero, Luis A., and Masa, X.. "Characteristic classes of subfoliations." Annales de l'institut Fourier 31.2 (1981): 61-86. <http://eudml.org/doc/74498>.

@article{Cordero1981,
abstract = {This paper is devoted to define a characteristic homomorphism for a subfoliation $(F_1,F_2)$ and to study its relation with the usual characteristic homomorphism for each foliation (as defined by Bott). Moreover, two applications are given: 1) the Yamato’s 2-codimensional foliation is shown to be no homotopic to $F_2$ in a (1,2)-codimensional subfoliation; 2) an obstruction to the existence of $d$ everywhere independent and transverse infinitesimal transformations of a foliation $F_2$ is obtained, when $F_2$ and these transformations generated a new foliation $F_1$.},
author = {Cordero, Luis A., Masa, X.},
journal = {Annales de l'institut Fourier},
keywords = {characteristic classes of subfoliations; obstruction to the existence of d everywhere independent and transverse infinitesimal transformations of a foliation},
language = {eng},
number = {2},
pages = {61-86},
publisher = {Association des Annales de l'Institut Fourier},
title = {Characteristic classes of subfoliations},
url = {http://eudml.org/doc/74498},
volume = {31},
year = {1981},
}

TY - JOUR
AU - Cordero, Luis A.
AU - Masa, X.
TI - Characteristic classes of subfoliations
JO - Annales de l'institut Fourier
PY - 1981
PB - Association des Annales de l'Institut Fourier
VL - 31
IS - 2
SP - 61
EP - 86
AB - This paper is devoted to define a characteristic homomorphism for a subfoliation $(F_1,F_2)$ and to study its relation with the usual characteristic homomorphism for each foliation (as defined by Bott). Moreover, two applications are given: 1) the Yamato’s 2-codimensional foliation is shown to be no homotopic to $F_2$ in a (1,2)-codimensional subfoliation; 2) an obstruction to the existence of $d$ everywhere independent and transverse infinitesimal transformations of a foliation $F_2$ is obtained, when $F_2$ and these transformations generated a new foliation $F_1$.
LA - eng
KW - characteristic classes of subfoliations; obstruction to the existence of d everywhere independent and transverse infinitesimal transformations of a foliation
UR - http://eudml.org/doc/74498
ER -

References

top
  1. [1] R. BOTT, Lectures on characteristic classes and foliations, Lectures on Algebraic and Differential Topology, Lecture Notes in Math., vol. 279, Springer-Verlag, Berlin and New York, 1972, pp. 1-94. Zbl0241.57010MR50 #14777
  2. [2] R. BOTT and A. HAEFLIGER, On characteristic classes of Г-foliations, Bull. Amer. Math. Soc., 78 (1972), 1039-1044. Zbl0262.57010MR46 #6370
  3. [3] L. A. CORDERO and P. M. GADEA, Exotic characteristic classes and subfoliations, Ann. Inst. Fourier, Grenoble, 26 (1976), 225-237; errata, ibid. 27, fasc. 4 (1977). Zbl0313.57010MR53 #6584
  4. [4] B. L. FEIGIN, Characteristic classes of flags of foliations. Functional Anal. Appl., 9 (1975), 312-317. Zbl0328.57008MR53 #6585
  5. [5] C. GODBILLON, Cohomologies d'algèbres de Lie de champs de vecteurs, Séminaire Bourbaki, 25e année (1971/1972), n° 421. Zbl0296.17010
  6. [6] A. HAEFLIGER, Sur les classes caractéristiques des feuilletages, Séminaire Bourbaki, 24e année (1971/1972), n° 412. Zbl0257.57011
  7. [7] G. HOCHSCHILD and J. P. SERRE, Cohomology of Lie algebras, Ann. of Math., 57 (1953), 591-603. Zbl0053.01402MR14,943c
  8. [8] F. KAMBER and Ph. TONDEUR, Foliated bundles and characteristic classes, Lecture Notes in Math., vol. 493, Springer-Verlag, Berlin and New York, 1975. Zbl0308.57011MR53 #6587
  9. [9] C. LAZAROV and H. SHULMAN, Obstructions to foliation-preserving Lie group actions, Topology, 18 (1979), 255-256. Zbl0413.57022MR80m:57020
  10. [10] C. LAZAROV and H. SHULMAN, Obstructions to foliation-preserving vector fields, To appear in J. Pure and Appl. Algebra. Zbl0523.57014
  11. [11] D. LEHMANN, Classes caractéristiques exotiques et J-connexité des espaces de connexions, Ann. Inst. Fourier, Grenoble, 24, 3 (1974), 267-306. Zbl0268.57009MR50 #14784
  12. [12] R. MOUSSU, Sur les classes exotiques des feuilletages. Géométrie Differentielle, Colloque, Santiago de Compostela, Espagne 1972, Lecture Notes in Math., vol. 392, Springer-Verlag, Berlin and New York, 1974, pp. 37-42. Zbl0292.57021MR50 #14785
  13. [13] H. SUZUKI, A property of a characteristic class of an orbit foliation, Transform. Groups, Proc. Conf. Univ. Newcastle 1976, London Math. Soc. Lecture Notes Series, vol. 26 (1977), Cambridge Univ. Press, Cambridge, pp. 190-203. Zbl0356.57013MR57 #13974
  14. [14] I. VAISMAN, Almost-multifoliate Riemannian manifolds, An. St. Univ. Iasi, 16 (1970), 97-103. Zbl0202.53003MR43 #1075
  15. [15] K. YAMATO, Examples of foliations with non-trivial exotic characteristic classes, Osaka J. Math., 12 (1975), 401-417. Zbl0318.57026MR53 #1607

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.