Spherical summation : a problem of E.M. Stein

Antonio Cordoba; B. Lopez-Melero

Annales de l'institut Fourier (1981)

  • Volume: 31, Issue: 3, page 147-152
  • ISSN: 0373-0956

Abstract

top
Writing ( T R λ f ) ^ ( ξ ) = ( 1 - | ξ | 2 / R 2 ) + λ f ^ ( ξ ) . E. Stein conjectured j | T R j λ f i | 2 1 / 2 p C j | f j | 2 1 / 2 p for λ > 0 , 4 3 p 4 and C = C λ , p . We prove this conjecture. We prove also f ( x ) = lim j T 2 j λ f ( x ) a.e. We only assume 4 3 + 2 λ < p < 4 1 - 2 λ .

How to cite

top

Cordoba, Antonio, and Lopez-Melero, B.. "Spherical summation : a problem of E.M. Stein." Annales de l'institut Fourier 31.3 (1981): 147-152. <http://eudml.org/doc/74501>.

@article{Cordoba1981,
abstract = {Writing $(T^\lambda _R f)\hat\{\}(\xi ) = (1- |\xi |^2/R^2)^\lambda _+ \hat\{f\}(\xi )$. E. Stein conjectured\begin\{\}\Big \Vert \Big (\sum \_j |T^\lambda \_\{R\_j\} f\_i|^2\Big )^\{1/2\}\Big \Vert \_p \le C\Big \Vert \Big (\sum \_j |f\_j|^2\Big )^\{1/2\}\Big \Vert \_p\end\{\}for $\lambda &gt;0$, $\{4\over 3\} \le p \le 4$ and $C= C_\{\lambda ,p\}$. We prove this conjecture. We prove also $f(x) = \lim _\{j\rightarrow \infty \} T^\lambda _\{2^j\} f(x)$ a.e. We only assume $\{4\over 3+2\lambda \} &lt; p &lt; \{4\over 1-2\lambda \}$.},
author = {Cordoba, Antonio, Lopez-Melero, B.},
journal = {Annales de l'institut Fourier},
keywords = {Fourier multiplier operator},
language = {eng},
number = {3},
pages = {147-152},
publisher = {Association des Annales de l'Institut Fourier},
title = {Spherical summation : a problem of E.M. Stein},
url = {http://eudml.org/doc/74501},
volume = {31},
year = {1981},
}

TY - JOUR
AU - Cordoba, Antonio
AU - Lopez-Melero, B.
TI - Spherical summation : a problem of E.M. Stein
JO - Annales de l'institut Fourier
PY - 1981
PB - Association des Annales de l'Institut Fourier
VL - 31
IS - 3
SP - 147
EP - 152
AB - Writing $(T^\lambda _R f)\hat{}(\xi ) = (1- |\xi |^2/R^2)^\lambda _+ \hat{f}(\xi )$. E. Stein conjectured\begin{}\Big \Vert \Big (\sum _j |T^\lambda _{R_j} f_i|^2\Big )^{1/2}\Big \Vert _p \le C\Big \Vert \Big (\sum _j |f_j|^2\Big )^{1/2}\Big \Vert _p\end{}for $\lambda &gt;0$, ${4\over 3} \le p \le 4$ and $C= C_{\lambda ,p}$. We prove this conjecture. We prove also $f(x) = \lim _{j\rightarrow \infty } T^\lambda _{2^j} f(x)$ a.e. We only assume ${4\over 3+2\lambda } &lt; p &lt; {4\over 1-2\lambda }$.
LA - eng
KW - Fourier multiplier operator
UR - http://eudml.org/doc/74501
ER -

References

top
  1. [1] E.M. STEIN, Some problems in harmonic analysis, Proc. Sym. Pure Math., Volume XXXV, Part. 1, (1979). Zbl0445.42006MR80m:42027
  2. [2] L. CARLESON and P. SJÖLIN, Oscillatory integrals and a multiplier problem for the disc, Studia Math., 44 (1972), 288-299. Zbl0215.18303MR50 #14052
  3. [3] A. CORDOBA, The Kakeya maximal function and the spherical summation multipliers, Am. J. of Math., Vol. 99, n° 1, (1977), 1-22. Zbl0384.42008MR56 #6259
  4. [4] A. CORDOBA, Some remarks on the Littlewood-Paley theory, To appear, Rendiconti di Circolo Mat. di Palermo. Zbl0506.42022
  5. [5] C. FEFFERMAN, The multiplier problem for the ball, Annals of Math., 94 (1971), 330-336. Zbl0234.42009MR45 #5661

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.