Spherical summation : a problem of E.M. Stein
Antonio Cordoba; B. Lopez-Melero
Annales de l'institut Fourier (1981)
- Volume: 31, Issue: 3, page 147-152
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topCordoba, Antonio, and Lopez-Melero, B.. "Spherical summation : a problem of E.M. Stein." Annales de l'institut Fourier 31.3 (1981): 147-152. <http://eudml.org/doc/74501>.
@article{Cordoba1981,
abstract = {Writing $(T^\lambda _R f)\hat\{\}(\xi ) = (1- |\xi |^2/R^2)^\lambda _+ \hat\{f\}(\xi )$. E. Stein conjectured\begin\{\}\Big \Vert \Big (\sum \_j |T^\lambda \_\{R\_j\} f\_i|^2\Big )^\{1/2\}\Big \Vert \_p \le C\Big \Vert \Big (\sum \_j |f\_j|^2\Big )^\{1/2\}\Big \Vert \_p\end\{\}for $\lambda >0$, $\{4\over 3\} \le p \le 4$ and $C= C_\{\lambda ,p\}$. We prove this conjecture. We prove also $f(x) = \lim _\{j\rightarrow \infty \} T^\lambda _\{2^j\} f(x)$ a.e. We only assume $\{4\over 3+2\lambda \} < p < \{4\over 1-2\lambda \}$.},
author = {Cordoba, Antonio, Lopez-Melero, B.},
journal = {Annales de l'institut Fourier},
keywords = {Fourier multiplier operator},
language = {eng},
number = {3},
pages = {147-152},
publisher = {Association des Annales de l'Institut Fourier},
title = {Spherical summation : a problem of E.M. Stein},
url = {http://eudml.org/doc/74501},
volume = {31},
year = {1981},
}
TY - JOUR
AU - Cordoba, Antonio
AU - Lopez-Melero, B.
TI - Spherical summation : a problem of E.M. Stein
JO - Annales de l'institut Fourier
PY - 1981
PB - Association des Annales de l'Institut Fourier
VL - 31
IS - 3
SP - 147
EP - 152
AB - Writing $(T^\lambda _R f)\hat{}(\xi ) = (1- |\xi |^2/R^2)^\lambda _+ \hat{f}(\xi )$. E. Stein conjectured\begin{}\Big \Vert \Big (\sum _j |T^\lambda _{R_j} f_i|^2\Big )^{1/2}\Big \Vert _p \le C\Big \Vert \Big (\sum _j |f_j|^2\Big )^{1/2}\Big \Vert _p\end{}for $\lambda >0$, ${4\over 3} \le p \le 4$ and $C= C_{\lambda ,p}$. We prove this conjecture. We prove also $f(x) = \lim _{j\rightarrow \infty } T^\lambda _{2^j} f(x)$ a.e. We only assume ${4\over 3+2\lambda } < p < {4\over 1-2\lambda }$.
LA - eng
KW - Fourier multiplier operator
UR - http://eudml.org/doc/74501
ER -
References
top- [1] E.M. STEIN, Some problems in harmonic analysis, Proc. Sym. Pure Math., Volume XXXV, Part. 1, (1979). Zbl0445.42006MR80m:42027
- [2] L. CARLESON and P. SJÖLIN, Oscillatory integrals and a multiplier problem for the disc, Studia Math., 44 (1972), 288-299. Zbl0215.18303MR50 #14052
- [3] A. CORDOBA, The Kakeya maximal function and the spherical summation multipliers, Am. J. of Math., Vol. 99, n° 1, (1977), 1-22. Zbl0384.42008MR56 #6259
- [4] A. CORDOBA, Some remarks on the Littlewood-Paley theory, To appear, Rendiconti di Circolo Mat. di Palermo. Zbl0506.42022
- [5] C. FEFFERMAN, The multiplier problem for the ball, Annals of Math., 94 (1971), 330-336. Zbl0234.42009MR45 #5661
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.