Esterlè's proof of the tauberian theorem for Beurling algebras
Annales de l'institut Fourier (1981)
- Volume: 31, Issue: 4, page 141-150
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topDales, H. G., and Hayman, W. K.. "Esterlè's proof of the tauberian theorem for Beurling algebras." Annales de l'institut Fourier 31.4 (1981): 141-150. <http://eudml.org/doc/74512>.
@article{Dales1981,
abstract = {Recently in this Journal J. Esterlé gave a new proof of the Wiener Tauberian theorem for $L^1(\{\bf R\})$ using the Ahlfors-Heins theorem for bounded analytic functions on a half-plane. We here use essentially the same method to prove the analogous result for Beurling algebras $L^1_\varphi (\{\bf R\})$. Our estimates need a theorem of Hayman and Korenblum.},
author = {Dales, H. G., Hayman, W. K.},
journal = {Annales de l'institut Fourier},
keywords = {Ahlfors-Heins theorem; bounded analytic functions; Beurling algebras},
language = {eng},
number = {4},
pages = {141-150},
publisher = {Association des Annales de l'Institut Fourier},
title = {Esterlè's proof of the tauberian theorem for Beurling algebras},
url = {http://eudml.org/doc/74512},
volume = {31},
year = {1981},
}
TY - JOUR
AU - Dales, H. G.
AU - Hayman, W. K.
TI - Esterlè's proof of the tauberian theorem for Beurling algebras
JO - Annales de l'institut Fourier
PY - 1981
PB - Association des Annales de l'Institut Fourier
VL - 31
IS - 4
SP - 141
EP - 150
AB - Recently in this Journal J. Esterlé gave a new proof of the Wiener Tauberian theorem for $L^1({\bf R})$ using the Ahlfors-Heins theorem for bounded analytic functions on a half-plane. We here use essentially the same method to prove the analogous result for Beurling algebras $L^1_\varphi ({\bf R})$. Our estimates need a theorem of Hayman and Korenblum.
LA - eng
KW - Ahlfors-Heins theorem; bounded analytic functions; Beurling algebras
UR - http://eudml.org/doc/74512
ER -
References
top- [1] A. BEURLING, Sur les intégrales de Fourier absolument convergentes et leur application à une transformation fonctionnelle, Neuvième Congr. Math. Scandinaves, (Helsinki, 1938), Tryekeri, Helsinki (1939), 199-210. Zbl65.0483.02JFM65.0483.02
- [2] A. BEURLING and P. MALLIAVIN, The Fourier transforms of measures with compact support, Acta Math., 107 (1962), 291-309. Zbl0127.32601MR26 #5361
- [3] R. P. BOAS, Jr., Entire functions, Academic Press, New York, 1954. Zbl0058.30201MR16,914f
- [4] Y. DOMAR, Translation invariant subspaces of weighted lp and Lp spaces, Math. Scand., 49 (1981), to appear. Zbl0465.47020MR83k:47022
- [5] J. ESTERLE, A complex-variable proof of the Wiener Tauberian theorem, Ann. Inst. Fourier, Grenoble, 30 (1980), 91-96. Zbl0419.40005MR81j:43016
- [6] I. M. GELFAND, D. A. RAIKOV and G. E. SHILOV, Commutative normed rings, Chelsea Publishing Co., New York, 1964.
- [7] V. P. GURARII, Harmonic analysis in spaces with a weight, Trudy Moskov. Mat. Obšč., 36 (1976), 21-76. = Trans. Moscow Math. Soc., 35 (1979), 21-75. Zbl0425.43007MR58 #17684
- [8] W. K. HAYMAN and B. KORENBLUM, An extension of the Riesz-Herglotz formula, Annales Academiae Scientiarum Fennicae, Series A1, Mathematica, 2 (1976), 175-201. Zbl0416.30019MR57 #6446
- [9] B. KORENBLUM, A generalization of Wiener's Tauberian theorem and harmonic analysis of rapidly increasing functions, (Russian), Trudy Moskow. Mat. Obšč., 7 (1958), 121-148.
- [10] R.E.A.C. PALEY and N. WIENER, Fourier transforms in the complex domain, American Math. Soc. Colloquium Publications, XIX, New York, 1934. Zbl0011.01601JFM60.0345.02
- [11] A. VRETBLAD, Spectral analysis in weighted L1 spaces on R, Ark. Math., 11 (1973), 109-138. Zbl0258.46047MR50 #5361
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.