Esterlè's proof of the tauberian theorem for Beurling algebras

H. G. Dales; W. K. Hayman

Annales de l'institut Fourier (1981)

  • Volume: 31, Issue: 4, page 141-150
  • ISSN: 0373-0956

Abstract

top
Recently in this Journal J. Esterlé gave a new proof of the Wiener Tauberian theorem for using the Ahlfors-Heins theorem for bounded analytic functions on a half-plane. We here use essentially the same method to prove the analogous result for Beurling algebras . Our estimates need a theorem of Hayman and Korenblum.

How to cite

top

Dales, H. G., and Hayman, W. K.. "Esterlè's proof of the tauberian theorem for Beurling algebras." Annales de l'institut Fourier 31.4 (1981): 141-150. <http://eudml.org/doc/74512>.

@article{Dales1981,
abstract = {Recently in this Journal J. Esterlé gave a new proof of the Wiener Tauberian theorem for $L^1(\{\bf R\})$ using the Ahlfors-Heins theorem for bounded analytic functions on a half-plane. We here use essentially the same method to prove the analogous result for Beurling algebras $L^1_\varphi (\{\bf R\})$. Our estimates need a theorem of Hayman and Korenblum.},
author = {Dales, H. G., Hayman, W. K.},
journal = {Annales de l'institut Fourier},
keywords = {Ahlfors-Heins theorem; bounded analytic functions; Beurling algebras},
language = {eng},
number = {4},
pages = {141-150},
publisher = {Association des Annales de l'Institut Fourier},
title = {Esterlè's proof of the tauberian theorem for Beurling algebras},
url = {http://eudml.org/doc/74512},
volume = {31},
year = {1981},
}

TY - JOUR
AU - Dales, H. G.
AU - Hayman, W. K.
TI - Esterlè's proof of the tauberian theorem for Beurling algebras
JO - Annales de l'institut Fourier
PY - 1981
PB - Association des Annales de l'Institut Fourier
VL - 31
IS - 4
SP - 141
EP - 150
AB - Recently in this Journal J. Esterlé gave a new proof of the Wiener Tauberian theorem for $L^1({\bf R})$ using the Ahlfors-Heins theorem for bounded analytic functions on a half-plane. We here use essentially the same method to prove the analogous result for Beurling algebras $L^1_\varphi ({\bf R})$. Our estimates need a theorem of Hayman and Korenblum.
LA - eng
KW - Ahlfors-Heins theorem; bounded analytic functions; Beurling algebras
UR - http://eudml.org/doc/74512
ER -

References

top
  1. [1] A. BEURLING, Sur les intégrales de Fourier absolument convergentes et leur application à une transformation fonctionnelle, Neuvième Congr. Math. Scandinaves, (Helsinki, 1938), Tryekeri, Helsinki (1939), 199-210. Zbl65.0483.02JFM65.0483.02
  2. [2] A. BEURLING and P. MALLIAVIN, The Fourier transforms of measures with compact support, Acta Math., 107 (1962), 291-309. Zbl0127.32601MR26 #5361
  3. [3] R. P. BOAS, Jr., Entire functions, Academic Press, New York, 1954. Zbl0058.30201MR16,914f
  4. [4] Y. DOMAR, Translation invariant subspaces of weighted lp and Lp spaces, Math. Scand., 49 (1981), to appear. Zbl0465.47020MR83k:47022
  5. [5] J. ESTERLE, A complex-variable proof of the Wiener Tauberian theorem, Ann. Inst. Fourier, Grenoble, 30 (1980), 91-96. Zbl0419.40005MR81j:43016
  6. [6] I. M. GELFAND, D. A. RAIKOV and G. E. SHILOV, Commutative normed rings, Chelsea Publishing Co., New York, 1964. 
  7. [7] V. P. GURARII, Harmonic analysis in spaces with a weight, Trudy Moskov. Mat. Obšč., 36 (1976), 21-76. = Trans. Moscow Math. Soc., 35 (1979), 21-75. Zbl0425.43007MR58 #17684
  8. [8] W. K. HAYMAN and B. KORENBLUM, An extension of the Riesz-Herglotz formula, Annales Academiae Scientiarum Fennicae, Series A1, Mathematica, 2 (1976), 175-201. Zbl0416.30019MR57 #6446
  9. [9] B. KORENBLUM, A generalization of Wiener's Tauberian theorem and harmonic analysis of rapidly increasing functions, (Russian), Trudy Moskow. Mat. Obšč., 7 (1958), 121-148. 
  10. [10] R.E.A.C. PALEY and N. WIENER, Fourier transforms in the complex domain, American Math. Soc. Colloquium Publications, XIX, New York, 1934. Zbl0011.01601JFM60.0345.02
  11. [11] A. VRETBLAD, Spectral analysis in weighted L1 spaces on R, Ark. Math., 11 (1973), 109-138. Zbl0258.46047MR50 #5361

NotesEmbed ?

top

You must be logged in to post comments.