A complex-variable proof of the Wiener tauberian theorem

Jean Esterlé

Annales de l'institut Fourier (1980)

  • Volume: 30, Issue: 2, page 91-96
  • ISSN: 0373-0956

Abstract

top
The fundamental semigroup ( a t ) t > 0 of the heat equation for the real line has an analytic extension ( a t ) Re t > 0 to the right-hand open half plane which satisfies a t | t | for Re t 1 . Using the Ahlfors-Heins theorem for bounded analytic functions on a half-plane we show that the Wiener tauberian theorem for L 1 ( R ) follows from the above inequality.

How to cite

top

Esterlé, Jean. "A complex-variable proof of the Wiener tauberian theorem." Annales de l'institut Fourier 30.2 (1980): 91-96. <http://eudml.org/doc/74452>.

@article{Esterlé1980,
abstract = {The fundamental semigroup $(a^t)_\{t&gt;0\}$ of the heat equation for the real line has an analytic extension $(a^t)_\{\{\rm Re\}\, t&gt;0\}$ to the right-hand open half plane which satisfies $\Vert a^t\Vert \le \sqrt\{\vert t\vert \}$ for Re$\, t\ge 1$. Using the Ahlfors-Heins theorem for bounded analytic functions on a half-plane we show that the Wiener tauberian theorem for $L^1(\{\bf R\})$ follows from the above inequality.},
author = {Esterlé, Jean},
journal = {Annales de l'institut Fourier},
keywords = {Wiener tauberian theorem},
language = {eng},
number = {2},
pages = {91-96},
publisher = {Association des Annales de l'Institut Fourier},
title = {A complex-variable proof of the Wiener tauberian theorem},
url = {http://eudml.org/doc/74452},
volume = {30},
year = {1980},
}

TY - JOUR
AU - Esterlé, Jean
TI - A complex-variable proof of the Wiener tauberian theorem
JO - Annales de l'institut Fourier
PY - 1980
PB - Association des Annales de l'Institut Fourier
VL - 30
IS - 2
SP - 91
EP - 96
AB - The fundamental semigroup $(a^t)_{t&gt;0}$ of the heat equation for the real line has an analytic extension $(a^t)_{{\rm Re}\, t&gt;0}$ to the right-hand open half plane which satisfies $\Vert a^t\Vert \le \sqrt{\vert t\vert }$ for Re$\, t\ge 1$. Using the Ahlfors-Heins theorem for bounded analytic functions on a half-plane we show that the Wiener tauberian theorem for $L^1({\bf R})$ follows from the above inequality.
LA - eng
KW - Wiener tauberian theorem
UR - http://eudml.org/doc/74452
ER -

References

top
  1. [1] R. P. BOAS, Entire functions, Academic press, New-York, 1954. Zbl0058.30201MR16,914f
  2. [2] P. EYMARD, L'algèbre de Fourier d'un groupe localement compact, Bull. Soc. Math. de France, 92 (1964), 181-236. Zbl0169.46403MR37 #4208
  3. [3] H. LEPTIN, On group algebras of nilpotent groups, Studia Math., 47 (1973), 37-49. Zbl0258.22009MR48 #9262
  4. [4] H. LEPTIN, Ideal theory in group algebras of locally compact groups, Inventiones Math., 31 (1976), 259-278. Zbl0328.22012MR53 #3189
  5. [5] A. M. SINCLAIR, Factorization, bounded approximate identities and a convolution algebra, J. Func. An. Zbl0385.46030

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.