A complex-variable proof of the Wiener tauberian theorem
Annales de l'institut Fourier (1980)
- Volume: 30, Issue: 2, page 91-96
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topEsterlé, Jean. "A complex-variable proof of the Wiener tauberian theorem." Annales de l'institut Fourier 30.2 (1980): 91-96. <http://eudml.org/doc/74452>.
@article{Esterlé1980,
abstract = {The fundamental semigroup $(a^t)_\{t>0\}$ of the heat equation for the real line has an analytic extension $(a^t)_\{\{\rm Re\}\, t>0\}$ to the right-hand open half plane which satisfies $\Vert a^t\Vert \le \sqrt\{\vert t\vert \}$ for Re$\, t\ge 1$. Using the Ahlfors-Heins theorem for bounded analytic functions on a half-plane we show that the Wiener tauberian theorem for $L^1(\{\bf R\})$ follows from the above inequality.},
author = {Esterlé, Jean},
journal = {Annales de l'institut Fourier},
keywords = {Wiener tauberian theorem},
language = {eng},
number = {2},
pages = {91-96},
publisher = {Association des Annales de l'Institut Fourier},
title = {A complex-variable proof of the Wiener tauberian theorem},
url = {http://eudml.org/doc/74452},
volume = {30},
year = {1980},
}
TY - JOUR
AU - Esterlé, Jean
TI - A complex-variable proof of the Wiener tauberian theorem
JO - Annales de l'institut Fourier
PY - 1980
PB - Association des Annales de l'Institut Fourier
VL - 30
IS - 2
SP - 91
EP - 96
AB - The fundamental semigroup $(a^t)_{t>0}$ of the heat equation for the real line has an analytic extension $(a^t)_{{\rm Re}\, t>0}$ to the right-hand open half plane which satisfies $\Vert a^t\Vert \le \sqrt{\vert t\vert }$ for Re$\, t\ge 1$. Using the Ahlfors-Heins theorem for bounded analytic functions on a half-plane we show that the Wiener tauberian theorem for $L^1({\bf R})$ follows from the above inequality.
LA - eng
KW - Wiener tauberian theorem
UR - http://eudml.org/doc/74452
ER -
References
top- [1] R. P. BOAS, Entire functions, Academic press, New-York, 1954. Zbl0058.30201MR16,914f
- [2] P. EYMARD, L'algèbre de Fourier d'un groupe localement compact, Bull. Soc. Math. de France, 92 (1964), 181-236. Zbl0169.46403MR37 #4208
- [3] H. LEPTIN, On group algebras of nilpotent groups, Studia Math., 47 (1973), 37-49. Zbl0258.22009MR48 #9262
- [4] H. LEPTIN, Ideal theory in group algebras of locally compact groups, Inventiones Math., 31 (1976), 259-278. Zbl0328.22012MR53 #3189
- [5] A. M. SINCLAIR, Factorization, bounded approximate identities and a convolution algebra, J. Func. An. Zbl0385.46030
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.