Regular holomorphic images of balls
John Erik Fornaess; Edgar Lee Stout
Annales de l'institut Fourier (1982)
- Volume: 32, Issue: 2, page 23-36
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topFornaess, John Erik, and Stout, Edgar Lee. "Regular holomorphic images of balls." Annales de l'institut Fourier 32.2 (1982): 23-36. <http://eudml.org/doc/74539>.
@article{Fornaess1982,
abstract = {Every $n$-dimensional complex manifold (connected, paracompact and Hausdorff) is the image of the unit ball in $C^n$ under a finite holomorphic map that is locally biholomorphic.},
author = {Fornaess, John Erik, Stout, Edgar Lee},
journal = {Annales de l'institut Fourier},
keywords = {characterization of complex manifolds; holomorphic mappings; image of unit ball},
language = {eng},
number = {2},
pages = {23-36},
publisher = {Association des Annales de l'Institut Fourier},
title = {Regular holomorphic images of balls},
url = {http://eudml.org/doc/74539},
volume = {32},
year = {1982},
}
TY - JOUR
AU - Fornaess, John Erik
AU - Stout, Edgar Lee
TI - Regular holomorphic images of balls
JO - Annales de l'institut Fourier
PY - 1982
PB - Association des Annales de l'Institut Fourier
VL - 32
IS - 2
SP - 23
EP - 36
AB - Every $n$-dimensional complex manifold (connected, paracompact and Hausdorff) is the image of the unit ball in $C^n$ under a finite holomorphic map that is locally biholomorphic.
LA - eng
KW - characterization of complex manifolds; holomorphic mappings; image of unit ball
UR - http://eudml.org/doc/74539
ER -
References
top- [1] D. H. BUSHNELL, Mapping a polydisc onto a complex manifold, Senior Thesis, Princeton University, 1976 (Princeton University Library).
- [2] J. E. FORNAESS and E. L. STOUT, Spreading polydiscs on complex manifolds, Amer. J. Math., 99 (1977), 933-960. Zbl0384.32004MR57 #10009
- [3] J. E. FORNAESS and E. L. STOUT, Polydiscs in complex manifolds, Math. Ann., 227 (1977), 145-153. Zbl0331.32007MR55 #8401
- [4] S. KOBAYASHI, Hyperbolic Manifolds and Holomorphic Mappings, Marcel Dekker, New York, 1970. Zbl0207.37902MR43 #3503
- [5] A. I. MARKUSHEVICH, Theory of Functions of a Complex Variable, vol. III, Prentice-Hall, Englewood Cliffs, 1967. Zbl0148.05201MR35 #6799
- [6] E. M. STEIN, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, 1970. Zbl0207.13501MR44 #7280
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.