The deficiency of entire functions with Fejér gaps

Takafumi Murai

Annales de l'institut Fourier (1983)

  • Volume: 33, Issue: 3, page 39-58
  • ISSN: 0373-0956

Abstract

top
We say that an entire function f ( z ) = k = 0 a k z n k ( 0 = n 0 < n 1 < n 2 < ... ) has Fejér gaps if k = 1 1 / n k < . The main result of this paper is as follows: An entire function with Fejér gaps has no finite deficient value.

How to cite

top

Murai, Takafumi. "The deficiency of entire functions with Fejér gaps." Annales de l'institut Fourier 33.3 (1983): 39-58. <http://eudml.org/doc/74600>.

@article{Murai1983,
abstract = {We say that an entire function $f(z)=\sum _\{k=0\}a_kz^\{n_k\}~(0=n_0&lt; n_1&lt; n_2&lt; \ldots )$ has Fejér gaps if $\sum ^\infty _\{k=1\}1/n_k&lt; \infty .$ The main result of this paper is as follows: An entire function with Fejér gaps has no finite deficient value.},
author = {Murai, Takafumi},
journal = {Annales de l'institut Fourier},
keywords = {deficiency; Fejer gap; Fabry gap},
language = {eng},
number = {3},
pages = {39-58},
publisher = {Association des Annales de l'Institut Fourier},
title = {The deficiency of entire functions with Fejér gaps},
url = {http://eudml.org/doc/74600},
volume = {33},
year = {1983},
}

TY - JOUR
AU - Murai, Takafumi
TI - The deficiency of entire functions with Fejér gaps
JO - Annales de l'institut Fourier
PY - 1983
PB - Association des Annales de l'Institut Fourier
VL - 33
IS - 3
SP - 39
EP - 58
AB - We say that an entire function $f(z)=\sum _{k=0}a_kz^{n_k}~(0=n_0&lt; n_1&lt; n_2&lt; \ldots )$ has Fejér gaps if $\sum ^\infty _{k=1}1/n_k&lt; \infty .$ The main result of this paper is as follows: An entire function with Fejér gaps has no finite deficient value.
LA - eng
KW - deficiency; Fejer gap; Fabry gap
UR - http://eudml.org/doc/74600
ER -

References

top
  1. [1] M. BIERNACKI, Sur les équations algébriques contenant des paramètres arbitraires, Bull. Int. Acad. Polon. Sci. Lett., Sér. A (III) (1927), 542-685. JFM56.0863.02
  2. [2] M. BIERNACKI, Sur les fonctions entières à séries lacunaires, C.R.A.S., Paris, Sér. A-B, 187 (1928), 477-479. Zbl54.0349.02JFM54.0349.02
  3. [3] J. CLUNIE, On integral functions with exceptional values, J. London Math. Soc., 42 (1967), 393-400. Zbl0164.08701MR35 #6828
  4. [4] L. FEJÉR, Über die Wurzel vom kleinsten absoluten Betrage einer algebraischen Gleichung, Math. Annalen, (1908), 413-423. Zbl39.0123.02JFM39.0123.02
  5. [5] W.H.J. FUCHS, Proof of a conjecture of G. Pólya concerning gap series, Illinois J. Math., 7 (1963), 661-667. Zbl0113.28702MR28 #3149
  6. [6] W.H.J. FUCHS, Nevanlinna theory and gap series, Symposia on theoretical physics and mathematics, V.9, Plenum Press, New York, 1969. Zbl0179.11001MR40 #5863
  7. [7] W.K. HAYMAN, Meromorphic functions, Oxford, 1964. Zbl0115.06203MR29 #1337
  8. [8] W.K. HAYMAN, Angular value distribution of power series with gaps, Proc. London Math. Soc., (3), 24 (1972), 590-624. Zbl0239.30035MR46 #5623
  9. [9] T. KÖVARI, On the Borel exceptional values of lacunary integral functions, J. Analyse Math., 9 (1961/1962), 71-109. Zbl0101.05302MR25 #3174
  10. [10] T. KÖVARI, A gap-theorem for entire functions of infinite order, Michigan Math. J., 12 (1965), 133-140. Zbl0152.06604MR31 #351
  11. [11] T. MURAI, The deficiency of gap series, Analysis (1983) to appear. Zbl0533.30028
  12. [12] V.S. PETRENKO, Growth of meromorphic functions of finite lower order, Izv. Akad. Nauk SSSR, Ser. Mat., 33 (1969), 414-454. Zbl0194.11101
  13. [13] G. PÓLYA, Lücken und Singularitäten von Porenzreihen, Math. Z., 29 (1929), 549-640. JFM55.0186.02
  14. [14] L.R. SONS, An analogue of a theorem of W.H.J. Fuchs on gap series, Proc. London Math. Soc., (3), 21 (1970), 525-539. Zbl0206.08801MR44 #6962
  15. [15] A. WIMAN, Über den Zusammenhang zwischen dem Maximalbetrage einer analytischen Function und dem grössten Gliede der zugehörigen Taylorschen Reihe, Acta Math., 37 (1914), 305-326. Zbl45.0641.02JFM45.0641.02
  16. [16] A. ZYGMUND, Trigonometric series I, Cambridge, 1959. Zbl0085.05601

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.