The deficiency of entire functions with Fejér gaps
Annales de l'institut Fourier (1983)
- Volume: 33, Issue: 3, page 39-58
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topMurai, Takafumi. "The deficiency of entire functions with Fejér gaps." Annales de l'institut Fourier 33.3 (1983): 39-58. <http://eudml.org/doc/74600>.
@article{Murai1983,
abstract = {We say that an entire function $f(z)=\sum _\{k=0\}a_kz^\{n_k\}~(0=n_0< n_1< n_2< \ldots )$ has Fejér gaps if $\sum ^\infty _\{k=1\}1/n_k< \infty .$ The main result of this paper is as follows: An entire function with Fejér gaps has no finite deficient value.},
author = {Murai, Takafumi},
journal = {Annales de l'institut Fourier},
keywords = {deficiency; Fejer gap; Fabry gap},
language = {eng},
number = {3},
pages = {39-58},
publisher = {Association des Annales de l'Institut Fourier},
title = {The deficiency of entire functions with Fejér gaps},
url = {http://eudml.org/doc/74600},
volume = {33},
year = {1983},
}
TY - JOUR
AU - Murai, Takafumi
TI - The deficiency of entire functions with Fejér gaps
JO - Annales de l'institut Fourier
PY - 1983
PB - Association des Annales de l'Institut Fourier
VL - 33
IS - 3
SP - 39
EP - 58
AB - We say that an entire function $f(z)=\sum _{k=0}a_kz^{n_k}~(0=n_0< n_1< n_2< \ldots )$ has Fejér gaps if $\sum ^\infty _{k=1}1/n_k< \infty .$ The main result of this paper is as follows: An entire function with Fejér gaps has no finite deficient value.
LA - eng
KW - deficiency; Fejer gap; Fabry gap
UR - http://eudml.org/doc/74600
ER -
References
top- [1] M. BIERNACKI, Sur les équations algébriques contenant des paramètres arbitraires, Bull. Int. Acad. Polon. Sci. Lett., Sér. A (III) (1927), 542-685. JFM56.0863.02
- [2] M. BIERNACKI, Sur les fonctions entières à séries lacunaires, C.R.A.S., Paris, Sér. A-B, 187 (1928), 477-479. Zbl54.0349.02JFM54.0349.02
- [3] J. CLUNIE, On integral functions with exceptional values, J. London Math. Soc., 42 (1967), 393-400. Zbl0164.08701MR35 #6828
- [4] L. FEJÉR, Über die Wurzel vom kleinsten absoluten Betrage einer algebraischen Gleichung, Math. Annalen, (1908), 413-423. Zbl39.0123.02JFM39.0123.02
- [5] W.H.J. FUCHS, Proof of a conjecture of G. Pólya concerning gap series, Illinois J. Math., 7 (1963), 661-667. Zbl0113.28702MR28 #3149
- [6] W.H.J. FUCHS, Nevanlinna theory and gap series, Symposia on theoretical physics and mathematics, V.9, Plenum Press, New York, 1969. Zbl0179.11001MR40 #5863
- [7] W.K. HAYMAN, Meromorphic functions, Oxford, 1964. Zbl0115.06203MR29 #1337
- [8] W.K. HAYMAN, Angular value distribution of power series with gaps, Proc. London Math. Soc., (3), 24 (1972), 590-624. Zbl0239.30035MR46 #5623
- [9] T. KÖVARI, On the Borel exceptional values of lacunary integral functions, J. Analyse Math., 9 (1961/1962), 71-109. Zbl0101.05302MR25 #3174
- [10] T. KÖVARI, A gap-theorem for entire functions of infinite order, Michigan Math. J., 12 (1965), 133-140. Zbl0152.06604MR31 #351
- [11] T. MURAI, The deficiency of gap series, Analysis (1983) to appear. Zbl0533.30028
- [12] V.S. PETRENKO, Growth of meromorphic functions of finite lower order, Izv. Akad. Nauk SSSR, Ser. Mat., 33 (1969), 414-454. Zbl0194.11101
- [13] G. PÓLYA, Lücken und Singularitäten von Porenzreihen, Math. Z., 29 (1929), 549-640. JFM55.0186.02
- [14] L.R. SONS, An analogue of a theorem of W.H.J. Fuchs on gap series, Proc. London Math. Soc., (3), 21 (1970), 525-539. Zbl0206.08801MR44 #6962
- [15] A. WIMAN, Über den Zusammenhang zwischen dem Maximalbetrage einer analytischen Function und dem grössten Gliede der zugehörigen Taylorschen Reihe, Acta Math., 37 (1914), 305-326. Zbl45.0641.02JFM45.0641.02
- [16] A. ZYGMUND, Trigonometric series I, Cambridge, 1959. Zbl0085.05601
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.