An extension of deLeeuw’s theorem to the n -dimensional rotation group

Anthony H. Dooley; Garth I. Gaudry

Annales de l'institut Fourier (1984)

  • Volume: 34, Issue: 2, page 111-135
  • ISSN: 0373-0956

Abstract

top
We study a method of approximating representations of the group M ( n ) by those of the group S O ( n + 1 ) . As a consequence we establish a version of a theorem of DeLeeuw for Fourier multipliers of L p that applies to the “restrictions” of a function on the dual of M ( n ) to the dual of S O ( n + 1 ) .

How to cite

top

Dooley, Anthony H., and Gaudry, Garth I.. "An extension of deLeeuw’s theorem to the $n$-dimensional rotation group." Annales de l'institut Fourier 34.2 (1984): 111-135. <http://eudml.org/doc/74625>.

@article{Dooley1984,
abstract = {We study a method of approximating representations of the group $M(n)$ by those of the group $SO(n+1)$. As a consequence we establish a version of a theorem of DeLeeuw for Fourier multipliers of $L^p$ that applies to the “restrictions” of a function on the dual of $M(n)$ to the dual of $SO(n+1)$.},
author = {Dooley, Anthony H., Gaudry, Garth I.},
journal = {Annales de l'institut Fourier},
keywords = {representation; theorem of deLeeuw; Fourier multipliers Lp},
language = {eng},
number = {2},
pages = {111-135},
publisher = {Association des Annales de l'Institut Fourier},
title = {An extension of deLeeuw’s theorem to the $n$-dimensional rotation group},
url = {http://eudml.org/doc/74625},
volume = {34},
year = {1984},
}

TY - JOUR
AU - Dooley, Anthony H.
AU - Gaudry, Garth I.
TI - An extension of deLeeuw’s theorem to the $n$-dimensional rotation group
JO - Annales de l'institut Fourier
PY - 1984
PB - Association des Annales de l'Institut Fourier
VL - 34
IS - 2
SP - 111
EP - 135
AB - We study a method of approximating representations of the group $M(n)$ by those of the group $SO(n+1)$. As a consequence we establish a version of a theorem of DeLeeuw for Fourier multipliers of $L^p$ that applies to the “restrictions” of a function on the dual of $M(n)$ to the dual of $SO(n+1)$.
LA - eng
KW - representation; theorem of deLeeuw; Fourier multipliers Lp
UR - http://eudml.org/doc/74625
ER -

References

top
  1. [1] J.-L. CLERC, Sommes de Riesz et multiplicateurs sur un groupe de Lie compact, Ann. Inst. Fourier, Grenoble, 24, 1 (1974), 149-172. Zbl0273.22011MR50 #14065
  2. [2] A. H. DOOLEY and J. W. RICE, Contractions of rotation groups and their representations. To appear, Math. Proc. Camb. Phil. Soc. Zbl0532.22014
  3. [3] E. HEWITT and K. A. ROSS, Abstract harmonic analysis, Vol. I, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1963. Zbl0115.10603
  4. [4] E. HEWITT and K. A. ROSS, Abstract harmonic analysis, Vol. II, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1970. Zbl0213.40103
  5. [5] J. E. HUMPHREYS, Introduction to Lie algebras and representation theory, Graduate Texts in Mathematics, Vol. 9. Springer-Verlag, New York-Berlin, 1972. Zbl0254.17004MR48 #2197
  6. [6] A. KLEPPNER and R. L. LIPSMAN, The Plancherel formula for group extensions, Ann. Sci. Ecole Norm. Sup., 5 (1972), 459-516. Zbl0239.43003MR49 #7387
  7. [7] K. DE LEEUW, On Lp multipliers, Ann. of Math., (2), 81 (1965), 364-379. Zbl0171.11803MR30 #5127
  8. [8] R. L. RUBIN, Harmonic analysis on the group of rigid motions of the Euclidean plane, Studia Math., LXII (1978), 125-141. Zbl0394.43008MR58 #2030
  9. [9] J. P. SERRE, Algèbres de Lie semi-simples complexes, W. A. Benjamin, Inc., New York, 1966. Zbl0144.02105MR35 #6721

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.