An extension of deLeeuw’s theorem to the -dimensional rotation group
Anthony H. Dooley; Garth I. Gaudry
Annales de l'institut Fourier (1984)
- Volume: 34, Issue: 2, page 111-135
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topDooley, Anthony H., and Gaudry, Garth I.. "An extension of deLeeuw’s theorem to the $n$-dimensional rotation group." Annales de l'institut Fourier 34.2 (1984): 111-135. <http://eudml.org/doc/74625>.
@article{Dooley1984,
abstract = {We study a method of approximating representations of the group $M(n)$ by those of the group $SO(n+1)$. As a consequence we establish a version of a theorem of DeLeeuw for Fourier multipliers of $L^p$ that applies to the “restrictions” of a function on the dual of $M(n)$ to the dual of $SO(n+1)$.},
author = {Dooley, Anthony H., Gaudry, Garth I.},
journal = {Annales de l'institut Fourier},
keywords = {representation; theorem of deLeeuw; Fourier multipliers Lp},
language = {eng},
number = {2},
pages = {111-135},
publisher = {Association des Annales de l'Institut Fourier},
title = {An extension of deLeeuw’s theorem to the $n$-dimensional rotation group},
url = {http://eudml.org/doc/74625},
volume = {34},
year = {1984},
}
TY - JOUR
AU - Dooley, Anthony H.
AU - Gaudry, Garth I.
TI - An extension of deLeeuw’s theorem to the $n$-dimensional rotation group
JO - Annales de l'institut Fourier
PY - 1984
PB - Association des Annales de l'Institut Fourier
VL - 34
IS - 2
SP - 111
EP - 135
AB - We study a method of approximating representations of the group $M(n)$ by those of the group $SO(n+1)$. As a consequence we establish a version of a theorem of DeLeeuw for Fourier multipliers of $L^p$ that applies to the “restrictions” of a function on the dual of $M(n)$ to the dual of $SO(n+1)$.
LA - eng
KW - representation; theorem of deLeeuw; Fourier multipliers Lp
UR - http://eudml.org/doc/74625
ER -
References
top- [1] J.-L. CLERC, Sommes de Riesz et multiplicateurs sur un groupe de Lie compact, Ann. Inst. Fourier, Grenoble, 24, 1 (1974), 149-172. Zbl0273.22011MR50 #14065
- [2] A. H. DOOLEY and J. W. RICE, Contractions of rotation groups and their representations. To appear, Math. Proc. Camb. Phil. Soc. Zbl0532.22014
- [3] E. HEWITT and K. A. ROSS, Abstract harmonic analysis, Vol. I, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1963. Zbl0115.10603
- [4] E. HEWITT and K. A. ROSS, Abstract harmonic analysis, Vol. II, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1970. Zbl0213.40103
- [5] J. E. HUMPHREYS, Introduction to Lie algebras and representation theory, Graduate Texts in Mathematics, Vol. 9. Springer-Verlag, New York-Berlin, 1972. Zbl0254.17004MR48 #2197
- [6] A. KLEPPNER and R. L. LIPSMAN, The Plancherel formula for group extensions, Ann. Sci. Ecole Norm. Sup., 5 (1972), 459-516. Zbl0239.43003MR49 #7387
- [7] K. DE LEEUW, On Lp multipliers, Ann. of Math., (2), 81 (1965), 364-379. Zbl0171.11803MR30 #5127
- [8] R. L. RUBIN, Harmonic analysis on the group of rigid motions of the Euclidean plane, Studia Math., LXII (1978), 125-141. Zbl0394.43008MR58 #2030
- [9] J. P. SERRE, Algèbres de Lie semi-simples complexes, W. A. Benjamin, Inc., New York, 1966. Zbl0144.02105MR35 #6721
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.