Transferring L p multipliers

Anthony H. Dooley

Annales de l'institut Fourier (1986)

  • Volume: 36, Issue: 4, page 107-136
  • ISSN: 0373-0956

Abstract

top
By combining some results of C. S. Herz on the Fourier algebra with the notion of contractions of Lie groups, we prove theorems which allow transference of L p multipliers either from the Lie algebra or from the Cartan motion group associated to a compact Lie group to the group itself.

How to cite

top

Dooley, Anthony H.. "Transferring $L^p$ multipliers." Annales de l'institut Fourier 36.4 (1986): 107-136. <http://eudml.org/doc/74731>.

@article{Dooley1986,
abstract = {By combining some results of C. S. Herz on the Fourier algebra with the notion of contractions of Lie groups, we prove theorems which allow transference of $L^ p$ multipliers either from the Lie algebra or from the Cartan motion group associated to a compact Lie group to the group itself.},
author = {Dooley, Anthony H.},
journal = {Annales de l'institut Fourier},
keywords = {Fourier algebra; contractions of Lie groups; multipliers; Cartan motion group},
language = {eng},
number = {4},
pages = {107-136},
publisher = {Association des Annales de l'Institut Fourier},
title = {Transferring $L^p$ multipliers},
url = {http://eudml.org/doc/74731},
volume = {36},
year = {1986},
}

TY - JOUR
AU - Dooley, Anthony H.
TI - Transferring $L^p$ multipliers
JO - Annales de l'institut Fourier
PY - 1986
PB - Association des Annales de l'Institut Fourier
VL - 36
IS - 4
SP - 107
EP - 136
AB - By combining some results of C. S. Herz on the Fourier algebra with the notion of contractions of Lie groups, we prove theorems which allow transference of $L^ p$ multipliers either from the Lie algebra or from the Cartan motion group associated to a compact Lie group to the group itself.
LA - eng
KW - Fourier algebra; contractions of Lie groups; multipliers; Cartan motion group
UR - http://eudml.org/doc/74731
ER -

References

top
  1. [1] J. L. CLERC, Sommes de Riesz et multiplicateurs sur un groupe de Lie compact, Ann. Inst. Fourier, 24-1 (1974), 149-172. Zbl0273.22011MR50 #14065
  2. [2] J. L. CLERC, Une formule asymptotique du type Mehler-Heine pour les zonales d'un espace riemannien, Studia Math., 57 (1976), 27-32. Zbl0335.43010MR54 #13476
  3. [3] R. R. COIFMAN and G. WEISS, Analyse harmonique sur certains espaces homogènes, Lecture notes in mathematics, vol 242, Springer-Verlag, Berlin, Heidelberg, New York (1971). Zbl0224.43006
  4. [4] R. R. COIFMAN and G. WEISS, Central multiplier theorems for compact Lie groups, Bull. Amer. Math. Soc., 80 (1974), 124-126. Zbl0276.43009MR48 #9271
  5. [5] A. H. DOOLEY and G. I. GAUDRY, An extension of De Leeuw's theorem to the n-dimensional rotation group, Ann. Inst. Fourier, Grenoble, 34-2 (1984), 111-135. Zbl0523.43002MR86a:43002
  6. [6] A. H. DOOLEY and G. I. GAUDRY, On Lp multipliers of Cartan motion groups, Journal of Functional Analysis, To appear Zbl0597.43005
  7. [7] A. H. DOOLEY and J. W. RICE, On contractions of semisimple Lie groups, Trans Amer. Math. Soc., (1985), 185-202. Zbl0546.22017MR86g:22019
  8. [8] P. EYMARD, Algèbres Ap et convoluteurs de Lp, Séminaire Bourbaki, 367 (1969-1970). Zbl0264.43006
  9. [9] S. HELGASON, Differential geometry, Lie groups and symmetric space, Academic Press, New York (1981). 
  10. [10] C. S. HERZ, Une généralisation de la notion de transformée de Fourier-Stieljes, Ann. Inst. Fourier, Grenoble, 24-3 (1974), 145-157. Zbl0287.43006MR54 #13466
  11. [11] C. S. HERZ, Asymmetry of norms of convolution operators II, Symposia Mathematica, 22 (1977), 223-230. Zbl0384.43007MR58 #6932
  12. [12] E. HEWITT and K. A. ROSS, Abstract Harmonic Analysis, Vol. I, Springer-Verlag Berlin, Heidelberg, New York (1963). Zbl0115.10603
  13. [13] E. HEWITT and K. A. ROSS, Abstract Harmonic Analysis, Vol. II, Springer-Verlag Berlin, Heidelberg, New York (1970). Zbl0213.40103
  14. [14] J. E. HUMPHREYS, An introduction to Lie algebras, Springer-Verlag, Berlin, Heidelberg, New York (1972). Zbl0254.17004MR48 #2197
  15. [15] R. L. RUBIN, Harmonic analysis on the group of rigid motions of the euclidean plane, Studia Math., 57 (1978), 125-141. Zbl0394.43008MR58 #2030
  16. [16] E. M. STEIN, Topics in harmonic analysis related to the Littlewood - Paley theory, Annals of Mathematics Studies, No. 63 Princeton N. J. (1970). Zbl0193.10502MR40 #6176
  17. [17] N. J. VILENKIN, Special Functions and the theory of group representations, Transl. Amer. Math. Soc., 22 (1968). Zbl0172.18404MR37 #5429
  18. [18] N. J. WEISS, A multiplier theorem for SU(n), Proc. Amer. Math. Soc., 59 (1976), 366-370. Zbl0298.22012MR54 #8156

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.