On the A -integrability of singular integral transforms

Shobha Madan

Annales de l'institut Fourier (1984)

  • Volume: 34, Issue: 2, page 53-62
  • ISSN: 0373-0956

Abstract

top
In this article we study the weak type Hardy space of harmonic functions in the upper half plane R + n + 1 and we prove the A -integrability of singular integral transforms defined by Calderón-Zygmund kernels. This generalizes the corresponding result for Riesz transforms proved by Alexandrov.

How to cite

top

Madan, Shobha. "On the $A$-integrability of singular integral transforms." Annales de l'institut Fourier 34.2 (1984): 53-62. <http://eudml.org/doc/74635>.

@article{Madan1984,
abstract = {In this article we study the weak type Hardy space of harmonic functions in the upper half plane $\{\bf R\}^\{n+1\}_+$ and we prove the $A$-integrability of singular integral transforms defined by Calderón-Zygmund kernels. This generalizes the corresponding result for Riesz transforms proved by Alexandrov.},
author = {Madan, Shobha},
journal = {Annales de l'institut Fourier},
keywords = {A-integrability; singular integral transforms; weak type Hardy spaces of harmonic functions in the upper half plane; A-integrability of singular integral transforms defined by Calderon-Zygmund kernels; Riesz transforms},
language = {eng},
number = {2},
pages = {53-62},
publisher = {Association des Annales de l'Institut Fourier},
title = {On the $A$-integrability of singular integral transforms},
url = {http://eudml.org/doc/74635},
volume = {34},
year = {1984},
}

TY - JOUR
AU - Madan, Shobha
TI - On the $A$-integrability of singular integral transforms
JO - Annales de l'institut Fourier
PY - 1984
PB - Association des Annales de l'Institut Fourier
VL - 34
IS - 2
SP - 53
EP - 62
AB - In this article we study the weak type Hardy space of harmonic functions in the upper half plane ${\bf R}^{n+1}_+$ and we prove the $A$-integrability of singular integral transforms defined by Calderón-Zygmund kernels. This generalizes the corresponding result for Riesz transforms proved by Alexandrov.
LA - eng
KW - A-integrability; singular integral transforms; weak type Hardy spaces of harmonic functions in the upper half plane; A-integrability of singular integral transforms defined by Calderon-Zygmund kernels; Riesz transforms
UR - http://eudml.org/doc/74635
ER -

References

top
  1. [1]A. B. ALEXANDROV, Mat. Zametki, 30, n° 1 (1981). 
  2. [2]N. BARY, Trigonometric Series, Pergamon, 1964. 
  3. [3]C. FEFFERMAN and E. M. STEIN, Hp spaces of several variables, Acta. Math., 129 (1972), 137-193. Zbl0257.46078MR56 #6263
  4. [4]R. F. GUNDY, On a theorem of F and M. Riez and an identity of A. Wald, Indiana Univ. Math. J., 30 (1981), 589-605. Zbl0466.31006MR82k:60106
  5. [5]P. SJÖGREN and S. MADAN, Poisson Integrals of absolutely continuous and other measures, (1983), to appear in Phil. Proc. Camb. Math. Soc. Zbl0523.28005
  6. [6]E. M. STEIN. Singular Integrals and differentiability properties of functions, Princeton University Press (1970). Zbl0207.13501MR44 #7280

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.