The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “On the A -integrability of singular integral transforms”

Harmonic spaces associated with adjoints of linear elliptic operators

Peter Sjögren (1975)

Annales de l'institut Fourier

Similarity:

Let L be an elliptic linear operator in a domain in R n . We imposse only weak regularity conditions on the coefficients. Then the adjoint L * exists in the sense of distributions, and we start by deducing a regularity theorem for distribution solutions of equations of type L * u = given distribution. We then apply to L * R.M. Hervé’s theory of adjoint harmonic spaces. Some other properties of L * are also studied. The results generalize earlier work of the author.

Boundary behaviour of harmonic functions in a half-space and brownian motion

D. L. Burkholder, Richard F. Gundy (1973)

Annales de l'institut Fourier

Similarity:

Let u be harmonic in the half-space R + n + 1 , n 2 . We show that u can have a fine limit at almost every point of the unit cubs in R n = R + n + 1 but fail to have a nontangential limit at any point of the cube. The method is probabilistic and utilizes the equivalence between conditional Brownian motion limits and fine limits at the boundary. In R + 2 it is known that the Hardy classes H p , 0 < p < , may be described in terms of the integrability of the nontangential maximal function, or, alternatively, in terms...

Duality on vector-valued weighted harmonic Bergman spaces

Salvador Pérez-Esteva (1996)

Studia Mathematica

Similarity:

We study the duals of the spaces A p α ( X ) of harmonic functions in the unit ball of n with values in a Banach space X, belonging to the Bochner L p space with weight ( 1 - | x | ) α , denoted by L p α ( X ) . For 0 < α < p-1 we construct continuous projections onto A p α ( X ) providing a decomposition L p α ( X ) = A p α ( X ) + M p α ( X ) . We discuss the conditions on p, α and X for which A p α ( X ) * = A q α ( X * ) and M p α ( X ) * = M q α ( X * ) , 1/p+1/q = 1. The last equality is equivalent to the Radon-Nikodým property of X*.

An inversion formula and a note on the Riesz kernel

Andrejs Dunkels (1976)

Annales de l'institut Fourier

Similarity:

For potentials U K T = K * T , where K and T are certain Schwartz distributions, an inversion formula for T is derived. Convolutions and Fourier transforms of distributions in ( D L ' p ) -spaces are used. It is shown that the equilibrium distribution with respect to the Riesz kernel of order α , 0 &lt; α &lt; m , of a compact subset E of R m has the following property: its restriction to the interior of E is an absolutely continuous measure with analytic density which is expressed by an explicit formula.

On the boundary limits of harmonic functions with gradient in L p

Yoshihiro Mizuta (1984)

Annales de l'institut Fourier

Similarity:

This paper deals with tangential boundary behaviors of harmonic functions with gradient in Lebesgue classes. Our aim is to extend a recent result of Cruzeiro (C.R.A.S., Paris, 294 (1982), 71–74), concerning tangential boundary limits of harmonic functions with gradient in L n ( R + n ) , R + n denoting the upper half space of the n -dimensional euclidean space R n . Our method used here is different from that of Nagel, Rudin and Shapiro (Ann. of Math., 116 (1982), 331–360); in fact, we use the integral representation...

On separately subharmonic functions (Lelong’s problem)

A. Sadullaev (2011)

Annales de la faculté des sciences de Toulouse Mathématiques

Similarity:

The main result of the present paper is : every separately-subharmonic function u ( x , y ) , which is harmonic in y , can be represented locally as a sum two functions, u = u * + U , where U is subharmonic and u * is harmonic in y , subharmonic in x and harmonic in ( x , y ) outside of some nowhere dense set S .

Mapping properties of fundamental operators in harmonic analysis related to Bessel operators

Jorge J. Betancor, Eleonor Harboure, Adam Nowak, Beatriz Viviani (2010)

Studia Mathematica

Similarity:

We obtain sharp power-weighted L p , weak type and restricted weak type inequalities for the heat and Poisson integral maximal operators, Riesz transform and a Littlewood-Paley type square function, emerging naturally in the harmonic analysis related to Bessel operators.