An application of fine potential theory to prove a Phragmen Lindelöf theorem
Annales de l'institut Fourier (1984)
- Volume: 34, Issue: 2, page 63-66
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topLyons, Terry J.. "An application of fine potential theory to prove a Phragmen Lindelöf theorem." Annales de l'institut Fourier 34.2 (1984): 63-66. <http://eudml.org/doc/74636>.
@article{Lyons1984,
abstract = {We give a new proof of a Phragmén Lindelöf theorem due to W.H.J. Fuchs and valid for an arbitrary open subset $U$ of the complex plane: if $f$ is analytic on $U$, bounded near the boundary of $U$, and the growth of $j$ is at most polynomial then either $f$ is bounded or $U\supset \lbrace |z| >r\rbrace $ for some positive $r$ and $f$ has a simple pole.},
author = {Lyons, Terry J.},
journal = {Annales de l'institut Fourier},
keywords = {Phragmen-Lindelöf theorem},
language = {eng},
number = {2},
pages = {63-66},
publisher = {Association des Annales de l'Institut Fourier},
title = {An application of fine potential theory to prove a Phragmen Lindelöf theorem},
url = {http://eudml.org/doc/74636},
volume = {34},
year = {1984},
}
TY - JOUR
AU - Lyons, Terry J.
TI - An application of fine potential theory to prove a Phragmen Lindelöf theorem
JO - Annales de l'institut Fourier
PY - 1984
PB - Association des Annales de l'Institut Fourier
VL - 34
IS - 2
SP - 63
EP - 66
AB - We give a new proof of a Phragmén Lindelöf theorem due to W.H.J. Fuchs and valid for an arbitrary open subset $U$ of the complex plane: if $f$ is analytic on $U$, bounded near the boundary of $U$, and the growth of $j$ is at most polynomial then either $f$ is bounded or $U\supset \lbrace |z| >r\rbrace $ for some positive $r$ and $f$ has a simple pole.
LA - eng
KW - Phragmen-Lindelöf theorem
UR - http://eudml.org/doc/74636
ER -
References
top- [1]J. L. DOOB, Conditional Brownian motion and the boundary limits of harmonic function, Bull. Soc. Math. France, 85 (1957). Zbl0097.34004MR22 #844
- [2]W. H. J. FUCHS, A Phragmen Lindelöf theorem conjectured by D. J. Newman, T.A.M.S., 257 (1981), 285-293. Zbl0472.30025MR82g:30041
- [3]B. FUGLEDE, Sur les fonctions finement holomorphes, Ann. Inst. Fourier, Grenoble, 31-4 (1981), 57-88. Zbl0445.30040MR83e:31003
- [4]F. W. GEHRING, W. K. HAYMAN and A. HINKKANEN, Analytic functions satisfying a Hölder condition on the boundary, Journal of Approximation Theory, 35 (1982), 243-249. Zbl0487.41009MR83i:30035
- [5]U. KURAN, A new criterion for Dirichlet regularity via quasi-boundedness of the fundamental superharmonic function, J.L.M.S., 19 (1979), 301-311. Zbl0404.31003MR81a:31003
- [6]T. J. LYONS, Finely Holomorphic Functions, and A Theorem in Fine Potential Theory and Applications to Finely Holomorphic Functions, Journ. Functional Analysis, 37 (1980), 1-18 and 19-26. Zbl0459.46038MR82d:31011a
- [7]P. A. MEYER, Processus de Markov : la frontière de Martin, Springer Lecture Notes in Mathematics No 77 (1968). Zbl0174.49303MR39 #7669
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.