Conditional brownian motion and the boundary limits of harmonic functions

J.L. Doob

Bulletin de la Société Mathématique de France (1957)

  • Volume: 85, page 431-458
  • ISSN: 0037-9484

How to cite


Doob, J.L.. "Conditional brownian motion and the boundary limits of harmonic functions." Bulletin de la Société Mathématique de France 85 (1957): 431-458. <>.

author = {Doob, J.L.},
journal = {Bulletin de la Société Mathématique de France},
keywords = {probability theory},
language = {eng},
pages = {431-458},
publisher = {Société mathématique de France},
title = {Conditional brownian motion and the boundary limits of harmonic functions},
url = {},
volume = {85},
year = {1957},

AU - Doob, J.L.
TI - Conditional brownian motion and the boundary limits of harmonic functions
JO - Bulletin de la Société Mathématique de France
PY - 1957
PB - Société mathématique de France
VL - 85
SP - 431
EP - 458
LA - eng
KW - probability theory
UR -
ER -


  1. [1] R. BLUMENTHAL, An extended Markov property (Trans. Amer. math. Soc., t. 85, 1957, p. 52-72). Zbl0084.13602MR19,468g
  2. [2] M. BRELOT, Le problème de Dirichlet. Axiomatique et frontière de Martin (J. Math. pures et appl., 9e série, t. 35, 1956, p. 297-335). Zbl0071.10001MR20 #6607
  3. [3] M. BRELOT et G. CHOQUET, Espaces et lignes de Green (Ann. Inst. Fourier, Grenoble, t. 3, 1951-1952, p. 199-263). Zbl0046.32701MR16,34e
  4. [4] J. L. DOOB, Semimartingales and subharmonic functions (Trans. Amer. math. Soc., t. 77, 1954, p. 86-121). Zbl0059.12205MR16,269a
  5. [5] J. L. DOOB, Probability methods applied to the first boundary value problem [Proc. Third Berkeley Symp. math. Stat. and Prob., t. 2, 1956, p. 49-80 (1955, Berkeley, Calif.) Berkeley et Los Angeles, University of California Press]. Zbl0074.09101
  6. [6] J. L. DOOB, Brownian motion on a Green space (Teoriya Veroyatnosti, t. 2, 1957, p. 3-33). Zbl0078.32505MR21 #5240
  7. [7] J. L. DOOB, Probability theory and the first boundary value problem (Illinois J. Math. t. 2, 1958, p. 19-36). Zbl0086.08403MR21 #5242
  8. [8] J. L. DOOB, Boundary limit theorems for a half-space [J. Math. pures et appl. (to appear)]. Zbl0097.34101
  9. [9] B. V. GNEDENKO and A. N. KOLMOGOROV, Limit distributions for sums of independent random variables (in russian), Moscow, 1949, (in translation) Cambridge, Mass, 1954. Zbl0056.36001
  10. [10] G. A. HUNT, Markoff processes and potentials I (Illinois J. Math., t. 1, 1957, p. 44-93). Zbl0100.13804MR19,951g
  11. [11] L. NAÏM, Sur le rôle de la frontière de R. S. Martin dans la théorie du potentiel, Chartres, Durand, 1957 (Thèse Sc. math., Paris, 1957). 

Citations in EuDML Documents

  1. , Introduction
  2. Richard F. Bass, Markov processes and convex minorants
  3. Terry J. Lyons, An application of fine potential theory to prove a Phragmen Lindelöf theorem
  4. Ross G. Pinsky, The lifetimes of conditioned diffusion processes
  5. J. Vuolle-Apiala, S. E. Graversen, Duality theory for self-similar processes
  6. J. L. Doob, A non probabilistic proof of the relative Fatou theorem
  7. Hélène Airault, Minorantes harmoniques et potentiels - Localisation sur une famille de temps d'arrêt - Réduite forte
  8. Jean Brossard, Comportement non-tangentiel et comportement brownien des fonctions harmoniques dans un demi-espace. Démonstration probabiliste d'un théorème de Calderon et Stein
  9. Linda Lumer-Naïm, Sur le théorème de Fatou généralisé
  10. J. L. Doob, Boundary approach filters for analytic functions

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.