Sur une extension du problème de Gleason dans les domaines pseudoconvexes

Joaquin M. Ortega

Annales de l'institut Fourier (1984)

  • Volume: 34, Issue: 4, page 67-74
  • ISSN: 0373-0956

Abstract

top
In this paper we prove that every has a decomposition with , for all pseudoconvex domains with real-analytic boundary, as well as for pseudoconvex domains for which the result holds true locally.

How to cite

top

Ortega, Joaquin M.. "Sur une extension du problème de Gleason dans les domaines pseudoconvexes." Annales de l'institut Fourier 34.4 (1984): 67-74. <http://eudml.org/doc/74658>.

@article{Ortega1984,
abstract = {Dans cet article on montre que toute $f\in A^\infty (\overline\{D\})$ a une décomposition $f(z) - f(w) = \sum ^n_\{i=1\} g_i(z,w) (z_i-w_i)$ avec $g_i \in A^\infty (\overline\{D\times D\})$ pour les domaines pseudoconvexes à frontière réelle-analytique et aussi pour les domaines pseudoconvexes pour lesquels le résultat soit valable localement.},
author = {Ortega, Joaquin M.},
journal = {Annales de l'institut Fourier},
keywords = {pseudoconvex domains; Gleason problem; d-bar-equations; real-analytic boundary; closed ideals of holomorphic functions; Kuenneth theorem},
language = {fre},
number = {4},
pages = {67-74},
publisher = {Association des Annales de l'Institut Fourier},
title = {Sur une extension du problème de Gleason dans les domaines pseudoconvexes},
url = {http://eudml.org/doc/74658},
volume = {34},
year = {1984},
}

TY - JOUR
AU - Ortega, Joaquin M.
TI - Sur une extension du problème de Gleason dans les domaines pseudoconvexes
JO - Annales de l'institut Fourier
PY - 1984
PB - Association des Annales de l'Institut Fourier
VL - 34
IS - 4
SP - 67
EP - 74
AB - Dans cet article on montre que toute $f\in A^\infty (\overline{D})$ a une décomposition $f(z) - f(w) = \sum ^n_{i=1} g_i(z,w) (z_i-w_i)$ avec $g_i \in A^\infty (\overline{D\times D})$ pour les domaines pseudoconvexes à frontière réelle-analytique et aussi pour les domaines pseudoconvexes pour lesquels le résultat soit valable localement.
LA - fre
KW - pseudoconvex domains; Gleason problem; d-bar-equations; real-analytic boundary; closed ideals of holomorphic functions; Kuenneth theorem
UR - http://eudml.org/doc/74658
ER -

References

top
  1. [1] P. AHERN and R. SCHNEIDER, The boundary behavior of Henkin's kernel, Pacific Journal of Math., vol. 66, n° 1 (1976), 9-14. Zbl0356.32016MR55 #8409
  2. [2] E. AMAR, ∂-cohomologie C∞ et Applications, Preprint, Université Orsay. 
  3. [3] K. DIEDERICH and J. FORNAESS, Pseudoconvex domains with realanalytic boundary, Annals of Mathematics, 107 (1978), 371-384. Zbl0378.32014MR57 #16696
  4. [4] A. GROTHENDIECK, Opérations algébriques sur les distributions à valeurs vectorielles, Théorème de Künneth, Séminaire Schwartz (53-54), Exposé 24. 
  5. [5] G. M. HENKIN, Approximation of functions in pseudoconvex domains and Leibenzon's theorem, Bull. Aca. Sci., Ser. Math. Astron. et Phys., 19 (1971), 37-42. Zbl0214.33701
  6. [6] P. JAKÓBCZAK, On Fornaess imbedding theorem, Preprint. Zbl0579.32032
  7. [7] N. KERZMAN and A. NAGEL, Finitely generated ideals in certain function algebras, J. Funct. Anal., (1971), 212-215. Zbl0211.43902MR43 #929
  8. [8] J. J. KOHN, Global regularity for ∂ on weakly pseudoconvex manifolds, Trans. Amer. Math. Soc., 181 (1973), 273-292. Zbl0276.35071MR49 #9442
  9. [9] I. LIEB, Die Cauchy-Riemannschen Differentialgleichung auf streng pseudokonveksen Gebieten : Stetige Randwerte, Math. Ann., 199 (1972), 241-256. Zbl0231.35055MR48 #6468
  10. [10] B. MALGRANGE, Ideals of differentiable functions, Oxford University Press, 1966. Zbl0177.17902
  11. [11] A. NAGEL, Flatness criteria for modules of holomorphic functions on On, Duke Math. J., vol. 40 (1973), 433-448. Zbl0263.32004MR49 #9256
  12. [12] A. NAGEL, On algebras of holomorphic functions with C∞-boundary values, Duke Math. J., 41 (1974), 527-535. Zbl0291.32023MR50 #2560
  13. [13] N. ØVRELID, Generators of the maximal ideals of A(D), Pac. Jour. Math., 39 (1971), 219-233. Zbl0231.46090MR46 #9393

NotesEmbed ?

top

You must be logged in to post comments.