Poincaré bundles for projective surfaces
Annales de l'institut Fourier (1985)
- Volume: 35, Issue: 2, page 217-249
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topMestrano, Nicole. "Poincaré bundles for projective surfaces." Annales de l'institut Fourier 35.2 (1985): 217-249. <http://eudml.org/doc/74676>.
@article{Mestrano1985,
abstract = {Let $X$ be a smooth projective surface, $K$ the canonical divisor, $H$ a very ample divisor and $M_ H(c_ 1,c_ 2)$ the moduli space of rank-two vector bundles, $H$-stable with Chern classes $c_ 1$ and $c_ 2$. We prove that, if there exists $c^\{\prime \}_ 1$ such that $c_ 1$ is numerically equivalent to $2c^\{\prime \}_ 1$ and if $c_ 2-\{1\over 4\}c^ 2_ 1$ is even, greater or equal to $H^ 2+HK+4$, then there is no Poincaré bundle on $M_ H(c_ 1,c_ 2)\times X$. Conversely, if there exists $c^\{\prime \}_ 1$ such that the number $c^\{\prime \}_ 1\cdot c_ 1$ is odd or if $\{1\over 2\}c^ 2_ 1-\{1\over 2\}c_ 1\cdot K-c_ 2$ is odd, then there exists a Poincaré bundle on $M_ H(c_ 1,c_ 2)\times X$.},
author = {Mestrano, Nicole},
journal = {Annales de l'institut Fourier},
keywords = {smooth projective surface; very ample divisor; moduli space of rank-two vector bundles; Chern classes; no Poincaré bundle},
language = {eng},
number = {2},
pages = {217-249},
publisher = {Association des Annales de l'Institut Fourier},
title = {Poincaré bundles for projective surfaces},
url = {http://eudml.org/doc/74676},
volume = {35},
year = {1985},
}
TY - JOUR
AU - Mestrano, Nicole
TI - Poincaré bundles for projective surfaces
JO - Annales de l'institut Fourier
PY - 1985
PB - Association des Annales de l'Institut Fourier
VL - 35
IS - 2
SP - 217
EP - 249
AB - Let $X$ be a smooth projective surface, $K$ the canonical divisor, $H$ a very ample divisor and $M_ H(c_ 1,c_ 2)$ the moduli space of rank-two vector bundles, $H$-stable with Chern classes $c_ 1$ and $c_ 2$. We prove that, if there exists $c^{\prime }_ 1$ such that $c_ 1$ is numerically equivalent to $2c^{\prime }_ 1$ and if $c_ 2-{1\over 4}c^ 2_ 1$ is even, greater or equal to $H^ 2+HK+4$, then there is no Poincaré bundle on $M_ H(c_ 1,c_ 2)\times X$. Conversely, if there exists $c^{\prime }_ 1$ such that the number $c^{\prime }_ 1\cdot c_ 1$ is odd or if ${1\over 2}c^ 2_ 1-{1\over 2}c_ 1\cdot K-c_ 2$ is odd, then there exists a Poincaré bundle on $M_ H(c_ 1,c_ 2)\times X$.
LA - eng
KW - smooth projective surface; very ample divisor; moduli space of rank-two vector bundles; Chern classes; no Poincaré bundle
UR - http://eudml.org/doc/74676
ER -
References
top- [1] W. BARTH, Some properties of stable rank-2 vector bundles on Pn, Math. Ann., 226 (1977). Zbl0332.32021MR55 #2905
- [2] G. ELLINGSRUD, S. A. STRØMME, On the moduli space for stable rank-2 vector bundles on P2 (preprint Oslo). Zbl0632.14013
- [3] R. HARSTHØRNE, Algebraic geometry, Springer, 1977. Zbl0367.14001
- [4] R. HARTSHORNE, Stable reflexive sheaves, Math. Ann., 254 (1980), 121-176. Zbl0431.14004MR82b:14011
- [5] A. HIRSCHOWITZ, M. S. NARASIMHAN, Fibrés de 't Hooft spéciaux et applications, Enumerative geometry and classical algebraic geometry, Progress in Math. (1982). Zbl0503.14006
- [6] J. LE POTIER, Fibrés stables de rang deux sur P2(C), Math. Ann., 241 (1979), 217-256. Zbl0405.14008MR80m:14012
- [7] M. MARUYAMA, On a family of algebraic vector bundles, Number theory, Alg. Geo. and Com. Alg., Tokyo (1973). Zbl0282.14002MR50 #13035
- [8] M. MARUYAMA, Moduli of stable sheaves II, J. of Math. of Kyoto Univ., Vol. 18 (1978). Zbl0395.14006MR82h:14011
- [9] M. MARUYAMA, Elementary transformation in the theory of vector bundles, Lecture Notes, 961, Alg. Geo., Springer Verlag, 1981. Zbl0505.14009
- [10] N. MESTRANO, Sections rationnelles de morphismes algébriques (preprint, Nice), 1983.
- [11] N. MESTRANO, S. RAMANAN, Poincaré bundles for families of curves (preprint, 1984). Zbl0566.14013
- [12] M. S. NARASIMHAN, S. RAMANAN, Vector bundles on curves in algebraic geometry, Bombay Colloquium, 1968. Zbl0213.23002
- [13] P. E. NEWSTEAD, A non existence theorem for families of stable bundles, Jour. Lond. Math. Soc. Zbl0248.14007
- [14] S. RAMANAN, The moduli space of vector bundles over an algebraic curve, Math. Ann., 200 (1973). Zbl0239.14013MR48 #3962
- [15] R. L. E. SCHWARZENBERGER, Vector bundles on algebraic surfaces, Proc. London Math. Soc., Vol. 11 (1961). Zbl0212.26003MR25 #1160
- [16] F. TAKEMOTO, Stable vector bundles on algebraic surfaces, Nagoya Math. Jour., 47 (1972). Zbl0245.14007MR49 #2735
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.