Inequalities of Bernstein-Jackson-type and the degree of compactness of operators in Banach spaces

Bernd Carl

Annales de l'institut Fourier (1985)

  • Volume: 35, Issue: 3, page 79-118
  • ISSN: 0373-0956

Abstract

top
The paper deals with covering problems and the degree of compactness of operators. The main part is devoted to relationships between entropy moduli and Kolmogorov (resp. Gelfand and approximation) numbers for operators which may be interpreted as counterparts to the classical Bernstein-Jackson inequalities for functions. Certain quantifications of results in the Riesz-Schauder-Theory are given. Finally, the largest distance between “the degree of approximation” and the “degree of compactness” of integral operators in C[0,1] generated by smooth kernels is determined. For illustrating of the quantifications we treat some eigenvalue and compactness problems of nuclear operators and operators of Hille-Tamarkin-type.

How to cite

top

Carl, Bernd. "Inequalities of Bernstein-Jackson-type and the degree of compactness of operators in Banach spaces." Annales de l'institut Fourier 35.3 (1985): 79-118. <http://eudml.org/doc/74689>.

@article{Carl1985,
abstract = {The paper deals with covering problems and the degree of compactness of operators. The main part is devoted to relationships between entropy moduli and Kolmogorov (resp. Gelfand and approximation) numbers for operators which may be interpreted as counterparts to the classical Bernstein-Jackson inequalities for functions. Certain quantifications of results in the Riesz-Schauder-Theory are given. Finally, the largest distance between “the degree of approximation” and the “degree of compactness” of integral operators in C[0,1] generated by smooth kernels is determined. For illustrating of the quantifications we treat some eigenvalue and compactness problems of nuclear operators and operators of Hille-Tamarkin-type.},
author = {Carl, Bernd},
journal = {Annales de l'institut Fourier},
keywords = {covering problems; degree of compactness of operators; relationships between entropy moduli and Kolmogorov (resp. Gelfand and approximation) numbers; Bernstein-Jackson inequalities; Riesz-Schauder-Theory; degree of approximation; integral operators; smooth kernels; eigenvalue and compactness problems of nuclear operators; operators of Hille-Tamarkin- type},
language = {eng},
number = {3},
pages = {79-118},
publisher = {Association des Annales de l'Institut Fourier},
title = {Inequalities of Bernstein-Jackson-type and the degree of compactness of operators in Banach spaces},
url = {http://eudml.org/doc/74689},
volume = {35},
year = {1985},
}

TY - JOUR
AU - Carl, Bernd
TI - Inequalities of Bernstein-Jackson-type and the degree of compactness of operators in Banach spaces
JO - Annales de l'institut Fourier
PY - 1985
PB - Association des Annales de l'Institut Fourier
VL - 35
IS - 3
SP - 79
EP - 118
AB - The paper deals with covering problems and the degree of compactness of operators. The main part is devoted to relationships between entropy moduli and Kolmogorov (resp. Gelfand and approximation) numbers for operators which may be interpreted as counterparts to the classical Bernstein-Jackson inequalities for functions. Certain quantifications of results in the Riesz-Schauder-Theory are given. Finally, the largest distance between “the degree of approximation” and the “degree of compactness” of integral operators in C[0,1] generated by smooth kernels is determined. For illustrating of the quantifications we treat some eigenvalue and compactness problems of nuclear operators and operators of Hille-Tamarkin-type.
LA - eng
KW - covering problems; degree of compactness of operators; relationships between entropy moduli and Kolmogorov (resp. Gelfand and approximation) numbers; Bernstein-Jackson inequalities; Riesz-Schauder-Theory; degree of approximation; integral operators; smooth kernels; eigenvalue and compactness problems of nuclear operators; operators of Hille-Tamarkin- type
UR - http://eudml.org/doc/74689
ER -

References

top
  1. [1] B. CARL, Entropy numbers, s-numbers, and eigenvalue problems, J. Funct. Anal., 41 (1981), 290-306. Zbl0466.41008MR82m:47015
  2. [2] B. CARL, On a characterization of operators from lq into a Banach space of type p with some applications to eigenvalue problems, J. Funct. Anal., 48 (1982), 394-407. Zbl0509.47017MR84i:47033
  3. [3] B. CARL, Entropy numbers of r-nuclear operators between Lp spaces, Studia Math., 77 (1983), 155-162. Zbl0563.47013MR85e:47028
  4. [4] B. CARL, On the degree of compactness of operators acting from function spaces into Banach spaces of type q, (Jena 1982). Zbl0507.47015
  5. [5] B. CARL, H. TRIEBEL, Inequalities between eigenvalues, entropy numbers and related quantities of compact operators in Banach spaces, Math. Ann., 251 (1980), 129-133. Zbl0465.47019MR82b:47022
  6. [6] X. FERNIQUE, Régularité des trajectoires des fonctions aléatoires gaussiennes, Lecture Notes Math., 480 (1975), 1-96. Zbl0331.60025MR54 #1355
  7. [7] T. FIGIEL, J. LINDENSTRAUSS, V.D. MILMAN, The dimensions of almost spherical sections of convex bodies, Acta Math., 139 (1977), 53-94. Zbl0375.52002MR56 #3618
  8. [8] E.D. GLUSKIN, On some finite dimensional problems of the theory of diameters, Vestnik Leningr. Univ., 13 (1981), 5-10. Zbl0482.41018MR83d:46018
  9. [9] E.D. GLUSKIN, Norms of random matrices and diameters of finite dimensional sets, Math. Sbornic, 120 (1983), 180-189. Zbl0528.46015MR84g:41021
  10. [10] U. HAAGERUP, The best constants in the Khintchine inequality, Proc. Intern. Conf. “Operator algebras, ideals, ...”, Teubner Texte Math., pp. 69-79, Leipzig, 1978. Zbl0411.41006MR81b:42002
  11. [11] S. HEINRICH, Optimal approximation of integral operators, in preparation. 
  12. [12] J. HOFFMANN-JØRGENSEN, Sums of independent Banach space valued random variables, Studia Math., 52 (1974), 159-186. Zbl0265.60005MR50 #8626
  13. [13] R.A. HUNT, On L (p, q) spaces, Enseign. Math., 12 (1966), 249-276. Zbl0181.40301MR36 #6921
  14. [14] W.B. JOHNSON, G. SCHECHTMAN, Embedding lmp into ln1, Acta Math., 149 (1982), 71-85. Zbl0522.46015MR84a:46031
  15. [15] B.S. KASHIN, Sections of some finite dimensional sets and classes of smooth functions, Izv. ANSSR, ser. mat., 41 (1977), 334-351, (Russian). 
  16. [16] T. KÜHN, Entropy numbers of r-nuclear operators in Banach spaces of type, Studia Math., (to appear). Zbl0574.47018
  17. [17] J. LINDENSTRAUSS, L. TZAFRIRI, Classical Banach spaces, Lect. Notes Math., 338, Berlin - Heidelberg - New York, 1973. Zbl0259.46011MR54 #3344
  18. [18] G.G. LORENTZ, Approximation of Functions, Academic Press, New York/Toronto/London, 1966. Zbl0153.38901MR35 #4642
  19. [19] E. MAKAI Jr., J. ZEMANEK, Geometrical means of eigenvalues, J. Operator Theory, 7 (1982), 173-178. Zbl0483.47018MR83m:47005
  20. [20] M. MARCUS, G. PISIER, Characterizations of almost surely continuous p-stable random Fourier series and strongly stationary processes (to appear). Zbl0547.60047
  21. [21] B. MAUREY, G. PISIER, Séries de variables aléatoires vectorielles indépendantes et propriétés géométriques des espaces de Banach, Studia Math., 58 (1976), 45-90. Zbl0344.47014MR56 #1388
  22. [22] B.S. MITJAGIN, A. PEŁCZYNSKI, Nuclear operators and approximative dimension, Proc. ICM, (1966), 366-372. Zbl0191.41704
  23. [23] A. PIETSCH, Operator ideals, Berlin, 1978. Zbl0399.47039MR81a:47002
  24. [24] A. PIETSCH, Weyl numbers and eigenvalues of operators in Banach spaces, Math. Ann., 47 (1980), 149-168. Zbl0428.47027MR82i:47073a
  25. [25] G. PISIER, Remarques sur un résultat non public de B. Maurey, Sem. d'Analyse Fonctionnelle 1980/1981, Exp. V. Zbl0491.46017
  26. [26] G. PISIER, On the dimension of the lnp-subspaces of Banach spaces, for 1 ≤ p &lt; 2, Trans. AMS, 276 (1983), 201-211. Zbl0509.46016MR84a:46035
  27. [27] F. RIESZ, Über lineare Funktionalgleichungen, Acta Math., 41 (1918), 71-98. JFM46.0635.01
  28. [28] J. SCHAUDER, Über lineare, vollstetige Funktionaloperationen, Studia Math., 2 (1930), 1-6. JFM56.0353.02
  29. [29] C. SCHUTT, Entropy numbers of diagonal operators between symmetric Banach spaces, J. Approx. Theory (to appear). Zbl0497.41017
  30. [30] J.S. SZARCK, On Kashin's almost euclidean orthogonal decomposition of l1n, Bull. Acad. Polon. Sci., 26 (1978). Zbl0395.46015
  31. [31] A.F. TIMAN, Approximation Theory of functions of Real Variables, Moscow, 1960. 
  32. [32] A. ZYGMUND, Trigonometric Series, Cambridge, 1968. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.